A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm...A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted.展开更多
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples...Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.展开更多
The failure process was characterized by complex diffusion of elements in the bonding layer,TGO growth and growth stress inside the coating.We studied the aluminum migration phenomenon of NiCoCrAlY and NiCoCrAlYHf coa...The failure process was characterized by complex diffusion of elements in the bonding layer,TGO growth and growth stress inside the coating.We studied the aluminum migration phenomenon of NiCoCrAlY and NiCoCrAlYHf coatings under high temperature oxidation,TGO growth characteristics,the microstructure and composition of the bonding layer,and integrates them into the description of the surface strain under coating tension.The experimental results show that the TGO growth rate of NiCoCrAIYHf coating is lower than that of NiCoCrAIY coating,and the formed TGO is thinner.After high temperature oxidation,the cracking time of NiCoCrAIY coating is advanced,while the cracking time of rare earth doped coating is delayed.The addition of rare earth elements can effectively inhibit the generation of spinel phase,improve the fracture toughness of TGO,refine the grains in the bonding layer,and increase the grain boundary strengthening by 29.1 MPa which is consistent with the experimental value.Therefore,the yield strength of the doped coating is improved and the crack time of the coating is delayed.展开更多
High temperature oxidation behaviors of FGH96 P/M superaUoy have been studied in air at temperatures ranging from 600 to 1000℃. By means of isothermal oxidation testing, X-ray diffraction, SEM (scanning electron mic...High temperature oxidation behaviors of FGH96 P/M superaUoy have been studied in air at temperatures ranging from 600 to 1000℃. By means of isothermal oxidation testing, X-ray diffraction, SEM (scanning electron microscopy), and EDS (energy dispersive X-ray spectroscopy) analyses, the oxidation kinetics as well as the composition and morphology of scales were investigated. Thermodynamic calculations were used to explain the oxidation mechanism. The results showed that as the oxidation temperature increased, the oxidation rate, the scale thickness, and scale spallation increased. FGH96 P/M superalloy exhibits good oxidation resistance at temperature below 800℃. The oxidation kinetics follows an approximately parabolic rate law, and the oxide layer was mainly composed of Cr2O3 TiO2 and a little amount of NiCr2O4. The oxidation is controlled by the transmission of chromium. titanium, and oxygen through the oxide scale.展开更多
The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt ...The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt pct K2SO4 was investigated at 900℃. The scale on the cast TiAINb tends to spall in air, while the scale on coating is very adherent. The sputtered Ti-48AI-8Cr-2Ag coating remarkably improved high temperature oxidation resistance of the cast Ti-46.5AI-5Nb alloy because of the formation of an adherent Al2O3 scale. Due to the inward diffusion of Cr, Kirkendall voids were found at the coating/substrate interface. TiAICrAg coating provided excellent hot corrosion resistance for TiAINb alloy in molten 75 wt pct Na2SO4+25 wt pct K2S04 at 900℃ due to the formation of a continuous Al_2O_3 scale.展开更多
High-temperature titanium alloy for aeroengine compressor applications suffers from high-temperature oxidation and environmental corrosion, which prohibits long-term service of this kind alloy at temperatures above 60...High-temperature titanium alloy for aeroengine compressor applications suffers from high-temperature oxidation and environmental corrosion, which prohibits long-term service of this kind alloy at temperatures above 600℃. In an attempt to tackle this problem, Ti-48Al (at. pct) and Ti-48Al-12Cr (at. pct) protective coatings were plated on the substrate of alloy Ti-60 by arc ion plating (ALP) method. Isothermal and cyclic oxidation tests were performed in static air at elevated temperatures. Phase composition, morphology of the coatings and distribution of elements were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the Ti-48Al coating exhibited good isothermal oxidation resistance during exposure at 800℃, but poorer resistance against oxidation at 900℃. By contrast Ti-48Al-12Cr coating demonstrated excellent isothermal oxidation resistance at both temperatures. Cyclic oxidation tests performed at 800℃ indicated that resistance and no spallation of coatings was observed. But both coatings demonstrated good cyclic oxidation at 900℃ only Ti-48Al-12Cr coating demonstrated excellent cyclic oxidation resistance.展开更多
To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more ...To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.展开更多
The alloy performance to resist high-temperature oxidation is mainly determined either by the formation of oxide scales or by the deposition of oxide coatings on the surface of alloys.In the former case,a protective o...The alloy performance to resist high-temperature oxidation is mainly determined either by the formation of oxide scales or by the deposition of oxide coatings on the surface of alloys.In the former case,a protective oxide scale,such as Al_2O_3,Cr_2O_3 and SiO_2,can be selectively formed by adjusting the composition of alloys.Even if the oxide scale on the surface of alloys is spalled,new oxide can grow continuously,so the oxidation of alloys can be inhibited effectively.In the latter case,theoretically, depositing oxygen diffusion barrier oxide coatings,such as Al_2O_3,Cr_2O_3 and SiO_2,can prevent alloys from oxidation as well.However,the integrity of these oxide coatings can not maintain for a long time,owing to the thermal stress produced by the difference of the expansion coefficients between the oxide coatings and alloy substrates.Consequently,the ability to resist high-temperature oxidation by depositing such oxide coatings should be disappeared.Therefore,an oxide coating possessed both properties to act as an excellent oxygen diffusion barrier and match a suitable expansion coefficient with alloy substrate,is the basic conditions for the coating to maintain the ability to resist high-temperature oxidation of alloys. Based on above-mentioned idea,a novel composite oxide coating has been developed to obtain two kinds of functions,to act as an oxygen diffusion barrier and to adjust the expansion coefficient of coating as required.Figure 1 shows the schematic diagram of such novel oxide coating.This coating is composed of ZrO_2-8%Y_2O_3(YSZ) particles packaged by nano-Al_2O_3 film.The nano-Al_2O_3 film has a bubble-like structure,each YSZ particle is packaged in an Al_2O_3 bubble.Owing to YSZ is a good conductor for oxygen ions,so oxygen diffusion in this composite coating is determined by the walls of Al_2O_3 bubbles or the nano-Al_2O_3 film.If the thickness of all walls of Al_2O_3 bubbles in the direction perpendicular to the surface of alloy is over a critical value,the Al_2O_3 bubbles can act as an excellent oxygen diffusion barrier. Owing to YSZ has a high thermal expansion coefficient,so the thermal expansion coefficient of coatings can be easily increased by enhancing the ratio of YSZ to Al_2O_3 in these coatings. These composite coatings have been prepared by an improved sol-gel method.Firstly, YSZ particles packaged Al_2O_3 gel film were painted or deposited by electrophoresis on the alloy surface. Then,the specimens were treated by thermal pressure filtration to get primary coatings without cracks.Finally,the primary coatings were sintered in microwave furnace to obtain compact coatings. It is demonstrated from the result of cycling oxidation experiment that both of the hightemperature oxidation resistance and oxide spallation resistance are increased obviously with the ratio of YSZ to Al_2O_3 in the coatings,which are much superior to that of MCrAlY coatings.Therefore, these novel coatings can be used to protect various kinds of alloys from high-temperature oxidation,and can be also served as the interlayer in the thermal barrier coating system.展开更多
Ni-W-P matrix composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by means of pulse electrodeposition,and the high-temperature oxidation behavior was investigated.The result...Ni-W-P matrix composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by means of pulse electrodeposition,and the high-temperature oxidation behavior was investigated.The results show that when the oxidation time is controlled in 1 h,oxidation kinetics curve between oxidation mass gain rate and oxidation temperature of CeO2-SiO2/Ni-W-P composites accords with the index increasing law.When the oxidation temperature is controlled at 300℃,the kinetics curve between oxidation mass gain rate and oxidation time accords with the linear increasing law.The composites as-deposited are in the amorphous state and turn into the crystal state at 400℃.The microstructures of oxidation film on the composites will change from the compact state to the loose state with increasing oxidation temperature to 800℃.They are still continuous and compact,and there are no crackle,strip and falling-out.CeO2 and SiO2 nano-particles co-deposited into Ni-W-P alloy can improve the high-temperature oxidation resistance.展开更多
Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The...Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.展开更多
The oxidation behaviors of Nb67-xW15Si18Hfx (x=0, 5, 10) alloys were studied at 1 250℃in air. It is found that the Nb67W15Si18 alloy has the best oxidation resistance among the three alloys; and Hf addition is harmfu...The oxidation behaviors of Nb67-xW15Si18Hfx (x=0, 5, 10) alloys were studied at 1 250℃in air. It is found that the Nb67W15Si18 alloy has the best oxidation resistance among the three alloys; and Hf addition is harmful to the oxidation resistance of the Nb67W15Si18 alloy. The oxides formed on the Nb67W15Si18 alloy are mainly Nb12WO33 and NbO2, and that on the Nb62W15Si18Hf5 and Nb57W15Si18Hf10 alloys is Nb2O5. Effect of Hf on the oxidation behavior of the Nb67-xW15Si18Hfx alloys has been discussed based on microstructures and kinetics of oxidation.展开更多
The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and ...The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.展开更多
High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been...High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.展开更多
The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed t...The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.展开更多
CO oxidation is probably the most studied reaction in heterogeneous catalysis.This reaction has become a hot topic with the discovery of nanogold catalysts,which are active at low temperatures(at or below room temper...CO oxidation is probably the most studied reaction in heterogeneous catalysis.This reaction has become a hot topic with the discovery of nanogold catalysts,which are active at low temperatures(at or below room temperature).Au catalysts are the benchmark for judging the activities of other metals in CO oxidation.Pt-group metals(PGMs) that give comparable performances are of particular interest.In this mini-review,we summarize the advances in various PGM(Pt,Pd,Ir,Rh,Ru)catalysts that have high catalytic activities in low-temperature CO oxidation arising from reducible supports or the presence of OH species.The effects of the size of the metal species and the importance of the interface between the metal and the reducible support are covered and discussed in terms of their promotional role in CO oxidation at low temperatures.展开更多
18CrNbTi ferritic stainless steel is a low-cost material mainly used for the fabrication of manifolds, which usually work at temperatures below 950℃. With the development of engine technology, exhaust manifolds tend ...18CrNbTi ferritic stainless steel is a low-cost material mainly used for the fabrication of manifolds, which usually work at temperatures below 950℃. With the development of engine technology, exhaust manifolds tend to work above 1 000 ℃ and this may be even higher in the future. For developing a new kind of steel to satisfy these requirements,the effects of tungsten (W)addition on the high-temperature strength and oxidation resistance of 18CrNbTi ferritic stainless steel are discussed in this study. The test results show that W enhances high-temperature strength at 1 000 ℃ and significantly improves oxidation resistance. However, W addition tends to degrade oxide layer adhesion,causing spalling during alternate hot and cold conditions.展开更多
The oxidation behavior of the Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy at 900℃ was investigated at different oxidation times(5,20,60 and 100 h).The results show that the total weight gain of the alloy after 100 h at 900℃ ox...The oxidation behavior of the Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy at 900℃ was investigated at different oxidation times(5,20,60 and 100 h).The results show that the total weight gain of the alloy after 100 h at 900℃ oxidation is 9.1 g·m^(-2),and the oxidation rate decreases with oxidation time.The oxides on the alloy surface are mainly TiO_(2) and Al_(2)O_(3).At the beginning of oxidation(5 h),the oxide film is relatively complete,thin,and the interface between the oxide layer and the matrix is virtually flat.At the end of oxidation(100 h),the thickness of the oxide film is expanded,cracking and spalling occur,and the spalling form is intra-film spalling.At the same time,oxygen is mainly distributed in the oxide film and the oxygen content in the alloy substrate is reduced,confirming that the TiAl alloy has a certain oxidation stability at 900℃.From the outer surface of the oxide layer to the matrix,the TiO_(2) content increases and the Al_(2)O_(3) content decreases.Oxidation proceeds to completion in this system via the dissolution and diffusion of O atom.展开更多
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the...The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.展开更多
In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstruc...In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.展开更多
A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and ...A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.展开更多
基金financially supported by the National Key R&D Program of China (No.2021YFB3700400)the National Natural Science Foundation of China (Nos.52074030,51904021,and 52174294)。
文摘A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted.
基金funded by the National Key Research and Development Program of China (2018YFE0104200)National Natural Science Foundation of China (51875310, 52175274, 82172065)Tsinghua Precision Medicine Foundation
文摘Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.
基金Funded by the National Natural Science Foundation of China(No.51965023)。
文摘The failure process was characterized by complex diffusion of elements in the bonding layer,TGO growth and growth stress inside the coating.We studied the aluminum migration phenomenon of NiCoCrAlY and NiCoCrAlYHf coatings under high temperature oxidation,TGO growth characteristics,the microstructure and composition of the bonding layer,and integrates them into the description of the surface strain under coating tension.The experimental results show that the TGO growth rate of NiCoCrAIYHf coating is lower than that of NiCoCrAIY coating,and the formed TGO is thinner.After high temperature oxidation,the cracking time of NiCoCrAIY coating is advanced,while the cracking time of rare earth doped coating is delayed.The addition of rare earth elements can effectively inhibit the generation of spinel phase,improve the fracture toughness of TGO,refine the grains in the bonding layer,and increase the grain boundary strengthening by 29.1 MPa which is consistent with the experimental value.Therefore,the yield strength of the doped coating is improved and the crack time of the coating is delayed.
文摘High temperature oxidation behaviors of FGH96 P/M superaUoy have been studied in air at temperatures ranging from 600 to 1000℃. By means of isothermal oxidation testing, X-ray diffraction, SEM (scanning electron microscopy), and EDS (energy dispersive X-ray spectroscopy) analyses, the oxidation kinetics as well as the composition and morphology of scales were investigated. Thermodynamic calculations were used to explain the oxidation mechanism. The results showed that as the oxidation temperature increased, the oxidation rate, the scale thickness, and scale spallation increased. FGH96 P/M superalloy exhibits good oxidation resistance at temperature below 800℃. The oxidation kinetics follows an approximately parabolic rate law, and the oxide layer was mainly composed of Cr2O3 TiO2 and a little amount of NiCr2O4. The oxidation is controlled by the transmission of chromium. titanium, and oxygen through the oxide scale.
文摘The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt pct K2SO4 was investigated at 900℃. The scale on the cast TiAINb tends to spall in air, while the scale on coating is very adherent. The sputtered Ti-48AI-8Cr-2Ag coating remarkably improved high temperature oxidation resistance of the cast Ti-46.5AI-5Nb alloy because of the formation of an adherent Al2O3 scale. Due to the inward diffusion of Cr, Kirkendall voids were found at the coating/substrate interface. TiAICrAg coating provided excellent hot corrosion resistance for TiAINb alloy in molten 75 wt pct Na2SO4+25 wt pct K2S04 at 900℃ due to the formation of a continuous Al_2O_3 scale.
文摘High-temperature titanium alloy for aeroengine compressor applications suffers from high-temperature oxidation and environmental corrosion, which prohibits long-term service of this kind alloy at temperatures above 600℃. In an attempt to tackle this problem, Ti-48Al (at. pct) and Ti-48Al-12Cr (at. pct) protective coatings were plated on the substrate of alloy Ti-60 by arc ion plating (ALP) method. Isothermal and cyclic oxidation tests were performed in static air at elevated temperatures. Phase composition, morphology of the coatings and distribution of elements were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the Ti-48Al coating exhibited good isothermal oxidation resistance during exposure at 800℃, but poorer resistance against oxidation at 900℃. By contrast Ti-48Al-12Cr coating demonstrated excellent isothermal oxidation resistance at both temperatures. Cyclic oxidation tests performed at 800℃ indicated that resistance and no spallation of coatings was observed. But both coatings demonstrated good cyclic oxidation at 900℃ only Ti-48Al-12Cr coating demonstrated excellent cyclic oxidation resistance.
文摘To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.
基金the Chinese National Natural Science Foundation(Grant.50771021)for financial support
文摘The alloy performance to resist high-temperature oxidation is mainly determined either by the formation of oxide scales or by the deposition of oxide coatings on the surface of alloys.In the former case,a protective oxide scale,such as Al_2O_3,Cr_2O_3 and SiO_2,can be selectively formed by adjusting the composition of alloys.Even if the oxide scale on the surface of alloys is spalled,new oxide can grow continuously,so the oxidation of alloys can be inhibited effectively.In the latter case,theoretically, depositing oxygen diffusion barrier oxide coatings,such as Al_2O_3,Cr_2O_3 and SiO_2,can prevent alloys from oxidation as well.However,the integrity of these oxide coatings can not maintain for a long time,owing to the thermal stress produced by the difference of the expansion coefficients between the oxide coatings and alloy substrates.Consequently,the ability to resist high-temperature oxidation by depositing such oxide coatings should be disappeared.Therefore,an oxide coating possessed both properties to act as an excellent oxygen diffusion barrier and match a suitable expansion coefficient with alloy substrate,is the basic conditions for the coating to maintain the ability to resist high-temperature oxidation of alloys. Based on above-mentioned idea,a novel composite oxide coating has been developed to obtain two kinds of functions,to act as an oxygen diffusion barrier and to adjust the expansion coefficient of coating as required.Figure 1 shows the schematic diagram of such novel oxide coating.This coating is composed of ZrO_2-8%Y_2O_3(YSZ) particles packaged by nano-Al_2O_3 film.The nano-Al_2O_3 film has a bubble-like structure,each YSZ particle is packaged in an Al_2O_3 bubble.Owing to YSZ is a good conductor for oxygen ions,so oxygen diffusion in this composite coating is determined by the walls of Al_2O_3 bubbles or the nano-Al_2O_3 film.If the thickness of all walls of Al_2O_3 bubbles in the direction perpendicular to the surface of alloy is over a critical value,the Al_2O_3 bubbles can act as an excellent oxygen diffusion barrier. Owing to YSZ has a high thermal expansion coefficient,so the thermal expansion coefficient of coatings can be easily increased by enhancing the ratio of YSZ to Al_2O_3 in these coatings. These composite coatings have been prepared by an improved sol-gel method.Firstly, YSZ particles packaged Al_2O_3 gel film were painted or deposited by electrophoresis on the alloy surface. Then,the specimens were treated by thermal pressure filtration to get primary coatings without cracks.Finally,the primary coatings were sintered in microwave furnace to obtain compact coatings. It is demonstrated from the result of cycling oxidation experiment that both of the hightemperature oxidation resistance and oxide spallation resistance are increased obviously with the ratio of YSZ to Al_2O_3 in the coatings,which are much superior to that of MCrAlY coatings.Therefore, these novel coatings can be used to protect various kinds of alloys from high-temperature oxidation,and can be also served as the interlayer in the thermal barrier coating system.
基金Project(20806035)supported by the National Natural Science Foundation of ChinaProject(2007E187M)supported by the Applied Basic Research Plans Program of Yunnan Province,China+2 种基金Project supported by the Foundation for Leaders of Disciplines in Science and Technology of Yunnan Province,ChinaProject(08C0025)supported by the Scientific Research Fund of Yunnan Provincial Education Department,ChinaProject supported by the Training Foundation for Talents of Kunming University of Science and Technology,China
文摘Ni-W-P matrix composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by means of pulse electrodeposition,and the high-temperature oxidation behavior was investigated.The results show that when the oxidation time is controlled in 1 h,oxidation kinetics curve between oxidation mass gain rate and oxidation temperature of CeO2-SiO2/Ni-W-P composites accords with the index increasing law.When the oxidation temperature is controlled at 300℃,the kinetics curve between oxidation mass gain rate and oxidation time accords with the linear increasing law.The composites as-deposited are in the amorphous state and turn into the crystal state at 400℃.The microstructures of oxidation film on the composites will change from the compact state to the loose state with increasing oxidation temperature to 800℃.They are still continuous and compact,and there are no crackle,strip and falling-out.CeO2 and SiO2 nano-particles co-deposited into Ni-W-P alloy can improve the high-temperature oxidation resistance.
文摘Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.
基金Project(50671002) supported by the National Natural Science Foundation of China
文摘The oxidation behaviors of Nb67-xW15Si18Hfx (x=0, 5, 10) alloys were studied at 1 250℃in air. It is found that the Nb67W15Si18 alloy has the best oxidation resistance among the three alloys; and Hf addition is harmful to the oxidation resistance of the Nb67W15Si18 alloy. The oxides formed on the Nb67W15Si18 alloy are mainly Nb12WO33 and NbO2, and that on the Nb62W15Si18Hf5 and Nb57W15Si18Hf10 alloys is Nb2O5. Effect of Hf on the oxidation behavior of the Nb67-xW15Si18Hfx alloys has been discussed based on microstructures and kinetics of oxidation.
基金Project (51075342) supported by the National Natural Science Foundation of ChinaProject (2007CB714704) supported by the National Basic Research Program of China
文摘The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.
基金Project supported by the National Natural Science Foundation of China (Nos. 90505015 and10702035)
文摘High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.
文摘The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.
基金supported by the National Natural Science Foundation of China(21076211,21203181,21576251,21676269)the "Strategic Priority Research Program" of the Chinese Academy of Sciences(XDB17020100)+1 种基金the National Key projects for Fundamental Research and Development of China(2016YFA0202801)Department of Science and Technology of Liaoning Province under contract of 2015020086-101~~
文摘CO oxidation is probably the most studied reaction in heterogeneous catalysis.This reaction has become a hot topic with the discovery of nanogold catalysts,which are active at low temperatures(at or below room temperature).Au catalysts are the benchmark for judging the activities of other metals in CO oxidation.Pt-group metals(PGMs) that give comparable performances are of particular interest.In this mini-review,we summarize the advances in various PGM(Pt,Pd,Ir,Rh,Ru)catalysts that have high catalytic activities in low-temperature CO oxidation arising from reducible supports or the presence of OH species.The effects of the size of the metal species and the importance of the interface between the metal and the reducible support are covered and discussed in terms of their promotional role in CO oxidation at low temperatures.
文摘18CrNbTi ferritic stainless steel is a low-cost material mainly used for the fabrication of manifolds, which usually work at temperatures below 950℃. With the development of engine technology, exhaust manifolds tend to work above 1 000 ℃ and this may be even higher in the future. For developing a new kind of steel to satisfy these requirements,the effects of tungsten (W)addition on the high-temperature strength and oxidation resistance of 18CrNbTi ferritic stainless steel are discussed in this study. The test results show that W enhances high-temperature strength at 1 000 ℃ and significantly improves oxidation resistance. However, W addition tends to degrade oxide layer adhesion,causing spalling during alternate hot and cold conditions.
基金financially supported by the National Natural Science Foundation of China (51805335)
文摘The oxidation behavior of the Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy at 900℃ was investigated at different oxidation times(5,20,60 and 100 h).The results show that the total weight gain of the alloy after 100 h at 900℃ oxidation is 9.1 g·m^(-2),and the oxidation rate decreases with oxidation time.The oxides on the alloy surface are mainly TiO_(2) and Al_(2)O_(3).At the beginning of oxidation(5 h),the oxide film is relatively complete,thin,and the interface between the oxide layer and the matrix is virtually flat.At the end of oxidation(100 h),the thickness of the oxide film is expanded,cracking and spalling occur,and the spalling form is intra-film spalling.At the same time,oxygen is mainly distributed in the oxide film and the oxygen content in the alloy substrate is reduced,confirming that the TiAl alloy has a certain oxidation stability at 900℃.From the outer surface of the oxide layer to the matrix,the TiO_(2) content increases and the Al_(2)O_(3) content decreases.Oxidation proceeds to completion in this system via the dissolution and diffusion of O atom.
基金Projects(CKJB201205,QKJB201202,YJK201307)supported by the Nanjing Institute of Technology,China
文摘The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.
基金Project(2014JZ012)supported by the Natural Science Program for Basic Research in Key Areas of Shaanxi Province,China
文摘In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.
基金Project(50971127)supported by the National Natural Science Foundation of China
文摘A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.