In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and impl...In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents.展开更多
在数据仓库系统中,数据立方体(Cube)及其预聚集处理在OLAP起到非常重要的作用.对于一个d维的data Cube可以生成2d个聚集Cuboids和multiply from i=1 to d(|Di|+1)个聚集数据单元,但对于一个高维Cube,要创建这些所有聚集Cuboids是不现实...在数据仓库系统中,数据立方体(Cube)及其预聚集处理在OLAP起到非常重要的作用.对于一个d维的data Cube可以生成2d个聚集Cuboids和multiply from i=1 to d(|Di|+1)个聚集数据单元,但对于一个高维Cube,要创建这些所有聚集Cuboids是不现实的.提出通过共享分段立方体Mini-Cube的高维Cube并行分布式存储结构(DHMC),将高维Cube划分成若干个低维共享分段立方体Mini-Cube,利用并行分布式处理技术来创建这些分割的分段共享Mini-Cube及其聚集Cuboids,来实现高维Cube的并行创建和增量更新维护,从而解决高维OLAP聚集海量数据的存储与查询问题.理论分析与实验结果均表明DHMC性能最佳.展开更多
For a data cube there are always constraints between dimensions or among attributes in a dimension, such as functional dependencies. We introduce the problem that when there are functional dependencies, how to use the...For a data cube there are always constraints between dimensions or among attributes in a dimension, such as functional dependencies. We introduce the problem that when there are functional dependencies, how to use them to speed up the computation of sparse data cubes. A new algorithm CFD (Computation by Functional Dependencies) is presented to satisfy this demand. CFD determines the order of dimensions by considering cardinalities of dimensions and functional dependencies between dimensions together, thus reduce the number of partitions for such dimensions. CFD also combines partitioning from bottom to up and aggregate computation from top to bottom to speed up the computation further. CFD can efficiently compute a data cube with hierarchies in a dimension from the smallest granularity to the coarsest one. Key words sparse data cube - functional dependency - dimension - partition - CFD CLC number TP 311 Foundation item: Supported by the E-Government Project of the Ministry of Science and Technology of China (2001BA110B01)Biography: Feng Yu-cai (1945-), male, Professor, research direction: database system.展开更多
Background: The accurate measurement of the femoral anteversion (FA) angle is always a topic of much debate in the orthopedic surgery and radiology research. We aimed to explore a new FA measurement method to acqui...Background: The accurate measurement of the femoral anteversion (FA) angle is always a topic of much debate in the orthopedic surgery and radiology research. We aimed to explore a new FA measurement method to acquire accurate results without radiation damage using piglet model. Methods: A total of thirty piglets were assigned to two groups based on the age. Bilateral femora were imaged with 3.0-T magnetic resonance (MR) and 64-slice computed tomography (CT) examinations on all piglets. FA was measured on MR-three-dimensional (3D) postprocessing software with a four-step method: initial validation of the femoral condylar axis, validation of the condylar plane, validation of the femoral neck axis, and line-plane angle measurement of FA. After MR and CT examinations, all piglets were sacrificed and their degree of FA was measured using their excised, dried femora. MR, CT, and dried-femur measurement results were analyzed statistically; M R and CT measurements were compared for accuracy against each other and against the gold standard dried femur measurement. Results: In both groups, the mean FA value measured by MR was lower than that measured by CT. A statistically significant difference was observed between CT- and dried-femur measurements but not between MR- and dried-femur measurements. A higher correlation (0.783 vs. 0.408) and a higher consistency (0.863 vs. 0.578) with dried-femur measurement results were seen for MR measurements than CT measurements in the 1 -week age group. However, in the 8-week age group, similar correlations (0.707 vs. 0.669) and consistencies (0.864 vs. 0.82 l ) were observed. Conclusions: Noninvasive MR-3D-Cube reconstruction was able to accurately measure FA in piglets. Particularly in the 1-week age group with a larger proportion of cartilaginous structures, the correlation and consistency between MR- and dried-femur measurement results were higher than those between CT- and dried-femur measurements, suggesting that MR may be a new useful examination tool for FA-related diseases in children.展开更多
文摘In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents.
文摘在数据仓库系统中,数据立方体(Cube)及其预聚集处理在OLAP起到非常重要的作用.对于一个d维的data Cube可以生成2d个聚集Cuboids和multiply from i=1 to d(|Di|+1)个聚集数据单元,但对于一个高维Cube,要创建这些所有聚集Cuboids是不现实的.提出通过共享分段立方体Mini-Cube的高维Cube并行分布式存储结构(DHMC),将高维Cube划分成若干个低维共享分段立方体Mini-Cube,利用并行分布式处理技术来创建这些分割的分段共享Mini-Cube及其聚集Cuboids,来实现高维Cube的并行创建和增量更新维护,从而解决高维OLAP聚集海量数据的存储与查询问题.理论分析与实验结果均表明DHMC性能最佳.
文摘For a data cube there are always constraints between dimensions or among attributes in a dimension, such as functional dependencies. We introduce the problem that when there are functional dependencies, how to use them to speed up the computation of sparse data cubes. A new algorithm CFD (Computation by Functional Dependencies) is presented to satisfy this demand. CFD determines the order of dimensions by considering cardinalities of dimensions and functional dependencies between dimensions together, thus reduce the number of partitions for such dimensions. CFD also combines partitioning from bottom to up and aggregate computation from top to bottom to speed up the computation further. CFD can efficiently compute a data cube with hierarchies in a dimension from the smallest granularity to the coarsest one. Key words sparse data cube - functional dependency - dimension - partition - CFD CLC number TP 311 Foundation item: Supported by the E-Government Project of the Ministry of Science and Technology of China (2001BA110B01)Biography: Feng Yu-cai (1945-), male, Professor, research direction: database system.
基金grants from the National Natural Science Foundation of China,Outstanding Scientific Fund of Shengjing Hospital
文摘Background: The accurate measurement of the femoral anteversion (FA) angle is always a topic of much debate in the orthopedic surgery and radiology research. We aimed to explore a new FA measurement method to acquire accurate results without radiation damage using piglet model. Methods: A total of thirty piglets were assigned to two groups based on the age. Bilateral femora were imaged with 3.0-T magnetic resonance (MR) and 64-slice computed tomography (CT) examinations on all piglets. FA was measured on MR-three-dimensional (3D) postprocessing software with a four-step method: initial validation of the femoral condylar axis, validation of the condylar plane, validation of the femoral neck axis, and line-plane angle measurement of FA. After MR and CT examinations, all piglets were sacrificed and their degree of FA was measured using their excised, dried femora. MR, CT, and dried-femur measurement results were analyzed statistically; M R and CT measurements were compared for accuracy against each other and against the gold standard dried femur measurement. Results: In both groups, the mean FA value measured by MR was lower than that measured by CT. A statistically significant difference was observed between CT- and dried-femur measurements but not between MR- and dried-femur measurements. A higher correlation (0.783 vs. 0.408) and a higher consistency (0.863 vs. 0.578) with dried-femur measurement results were seen for MR measurements than CT measurements in the 1 -week age group. However, in the 8-week age group, similar correlations (0.707 vs. 0.669) and consistencies (0.864 vs. 0.82 l ) were observed. Conclusions: Noninvasive MR-3D-Cube reconstruction was able to accurately measure FA in piglets. Particularly in the 1-week age group with a larger proportion of cartilaginous structures, the correlation and consistency between MR- and dried-femur measurement results were higher than those between CT- and dried-femur measurements, suggesting that MR may be a new useful examination tool for FA-related diseases in children.