In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectra...In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.展开更多
In this paper, laser induced plasma signals were analyzed during keyhole welding through three methods. According to the results, the relativity between optical and acoustic signals of plasma is shown when welds are i...In this paper, laser induced plasma signals were analyzed during keyhole welding through three methods. According to the results, the relativity between optical and acoustic signals of plasma is shown when welds are in full-penetration, or partial-penetration and non-penetration.展开更多
By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calcu...By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.展开更多
Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal ...Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal is studied, Under the experimental conditions, the plasma optic signal has good response to variety of the weld penetration, and the signal's RMS value increases with the penetration in a quadratic curve mode. The inherent relation between the plasma optic signal and the penetration depth is also analyzed. It is also found that, between the two common parameters of laser power and welding speed, laser power has more influence on penetration while welding speed has more influence on weld width. The research results provide theoretic and practical bases for penetration real-time monitoring or predicting in partial-penetration laser welding,展开更多
A single-mode laser noise model driven by quadratic colored pump noise and amplitude modulation signal is proposed. The real and imaginary parts of the pump noise are assumed to be cross-correlation. The effect of cro...A single-mode laser noise model driven by quadratic colored pump noise and amplitude modulation signal is proposed. The real and imaginary parts of the pump noise are assumed to be cross-correlation. The effect of cross- correlation of noise and amplitude modulation of signal on laser statistical properties is studied by using the linearized approximation. The analytic expression of signal-to-noise ratio (SNR) is calculated. It is found that the phenomena of stochastic resonance (SR) respectively exist in the curves of the SNR versus the noise cross-correlation coefficient λ and the SNR versus the pump parameter a, as well as the SNR versus the signal frequency ω in our model. It is shown that there are three different typies of SR in the model: the conventional form of SR, the SR in the broad sense, and the bona fide SR.展开更多
The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, t...The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, the imaging model of the detector, calculation model of the position and the signal-to-noise ratio(SNR) model of the circuit are built to derive both the correlation between the resolution error of the rolling angle and the spot position, and the relation between the position resolution error and the SNR. Then the influence of each parameter on the SNR is analyzed at large,and the parameters of the circuit are determined. Meanwhile, the SNR and noise voltage of the circuit are calculated according to the SNR model and the decay model of the laser energy. Finally,the actual photoelectric detection circuit is built, whose SNR is measured to be up to 53 d B. It can fully meet the requirement of0.5° for the resolution error of the rolling angle, thereby realizing the analysis of critical technology for photoelectric detection of laser seeker signals.展开更多
A new method of receiving laser interferometric measuring signals, that is, method of three photoelectric cells, is presented. The advantages and favorable conditions of the method are analyzed and discussed thoroughl...A new method of receiving laser interferometric measuring signals, that is, method of three photoelectric cells, is presented. The advantages and favorable conditions of the method are analyzed and discussed thoroughly. This method has been successfully applied in the high precision laser interferometer.展开更多
The statistical distribution of natural phenomena is of great significance in studying the laws of nature. In order to study the statistical characteristics of a random pulse signal, a random process model is proposed...The statistical distribution of natural phenomena is of great significance in studying the laws of nature. In order to study the statistical characteristics of a random pulse signal, a random process model is proposed theoretically for better studying of the random law of measured results. Moreover, a simple random pulse signal generation and testing system is designed for studying the counting distributions of three typical objects including particles suspended in the air, standard particles, and background noise. Both normal and lognormal distribution fittings are used for analyzing the experimental results and testified by chi-square distribution fit test and correlation coefficient for comparison. In addition, the statistical laws of three typical objects and the relations between them are discussed in detail. The relation is also the non-integral dimension fractal relation of statistical distributions of different random laser scattering pulse signal groups.展开更多
Using the linear approximation method, this paper studies the statistical property of a single-mode laser driven by both coloured pump noise with signal modulation and the quantum noise with cross-correlation between ...Using the linear approximation method, this paper studies the statistical property of a single-mode laser driven by both coloured pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts, and calculates the steady-state mean normalized intensity fluctuation and intensity correlation time. It analyses the influences of the modulation signal, the net gain coefficient, the noise and its correlation form on the statistical fluctuation of the laser system respectively. It is found that the coloured pump noise modulated by the signal has a great suppressing action on the statistical fluctuation of the laser system; the pump noise self-correlation time and the specific frequency of modulation signal have the result that the statistical fluctuation tends to zero. Furthermore, the 'colour' correlation of pump noise has much influences on the statistical fluctuation of the laser system. Increasing the intensity of pump noise will augment the statistical fluctuation of the laser system, but the intensity of quantum noise and the coefficient of cross-correlation between its real and imaginary parts have less influence on the statistical fluctuation of the laser system. Therefore, from the conclusions of this paper the statistical property can be known and a theoretical basis for steady operation and output of the laser system can be provided.展开更多
An equivalent circuit model for the design and analysis of two-section gain lever quantum dot(QD)laser is presented.This model is based on the three level rate equations with two independent carrier populations and a ...An equivalent circuit model for the design and analysis of two-section gain lever quantum dot(QD)laser is presented.This model is based on the three level rate equations with two independent carrier populations and a single longitudinal optical mode.By using the presented model,the effect of gain lever on QD laser performances is investigated.The results of simulation show that the main characteristics of laser such as threshold current,transient response,output power and modulation response are affected by differential gain ratios between the two-sections.展开更多
The statistical properties of a homogeneously broadened ring laser with an injected signal are investigated and the normalized two-mode intensity auto- and cross-correlation functions are calculated by a full saturati...The statistical properties of a homogeneously broadened ring laser with an injected signal are investigated and the normalized two-mode intensity auto- and cross-correlation functions are calculated by a full saturation laser theory with backscattering. The theoretical predictions are in good agreement with the experimental measurements.Further investigation reveals that the backscattering can reduce the fluctuations in the system while the full saturation effect plays a major role when the laser is operated above threshold. It is also quite important to notice that the injected signal can drive the weak mode from incoherent light to coherent light.展开更多
On the basis of calculating the steady-state mean normalized intensity fluctuation of a signal-mode laser system driven by both colored pump noise with signal modulation and the quantum noise with cross-correlation be...On the basis of calculating the steady-state mean normalized intensity fluctuation of a signal-mode laser system driven by both colored pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts, we analyze the influence of modulation signal, noise, and its correlation form on the statistical fluctuation of the laser system. We have found that when the amplitude of modulation signal weakens and its frequency quickens, the statistical fluctuation will reduce rapidly. The by reducing the intensity of pump noise and quantum noise. statistical fluctuation of the laser system can be restrained Moreover, with prolonging of colored cross-correlation time, the statistical fluctuation of laser system experiences a repeated changing process, that is, from decreasing to augmenting, then to decreasing, and finally to augmenting again. With the decreasing of the value of cross-correlation coe~cient, the statistical fluctuation will decrease too. When the cross-correlation form between the real part and imaginary part of quantum noise is zero correlation, the statistical fluctuation of laser system has a minimum. Compared with the influence of intensity of pump noise, the influence of intensity of quantum noise on the statistical fluctuation is smaller.展开更多
Large-signal modulation capability, as an important performance indicator, is directly related to the high-speed optical communication technology involved. We experimentally and theoretically investigate the large-sig...Large-signal modulation capability, as an important performance indicator, is directly related to the high-speed optical communication technology involved. We experimentally and theoretically investigate the large-signal modulation characteristics of the simultaneous ground-state (GS) and the excited-state (ES) lasing in InAs/OaAs quantum dot laser diodes. The large-signal modulation capability of total light intensity in the transition regime from OS lasing to two-state lasing is unchanged as the bias-current increases. However, GS and ES large-signal eye diagrams show obvious variations during the transition. Relaxation oscillations and large-signal eye diagrams for OS, ES, and total light intensities are numerically simulated and analyzed in detail by using a rate-equation model. The -ndings show that a complementary relationship between the light intensities for OS and ES lasing exists in both the transition regime and the two-state lasing regime, leading to a much smaller overshooting power and a shorter settling time for the total light intensity. Therefore, the eye diagrams of GS or ES lasing are diffuse whereas those of total light intensity are constant as the bias-current increases in the transition regime.展开更多
Numerical simulation of diode-pumped Q-switched Nd:YAG laser leading to the generation of eye-safe signal in singly resonant Intracavity Optical Parametric Oscillator (IOPO) is presented. Starting from rate equations,...Numerical simulation of diode-pumped Q-switched Nd:YAG laser leading to the generation of eye-safe signal in singly resonant Intracavity Optical Parametric Oscillator (IOPO) is presented. Starting from rate equations, the time dependent laser equations have been solved numerically, whereas the space-dependent OPO equations analytically. Our results show that 1.4 J diode laser (810 nm) pulse with 200 msec width, delivers 30 mJ Nd:YAG laser (1064 nm) pulse with 5 n-second width. This Nd:YAG laser further generates 9 mJ eye safe signal (1570 nm) pulse with 2.5 n-second width.展开更多
This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current...This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current signal is converted and transferred,then sent to the computer to display the final results.Through the laser gyro performance te sting,the obtained results coincide with those of the existing methods.Thus th e d esigned circuit realizes the function of laser gyro signal processing.展开更多
Objective: To study the effect of low-level laser irradiation (LLLI) combined with ferulic acid on the osteoblast differentiation and maturation as well as osteogenesis signaling pathway expression. Methods: The crani...Objective: To study the effect of low-level laser irradiation (LLLI) combined with ferulic acid on the osteoblast differentiation and maturation as well as osteogenesis signaling pathway expression. Methods: The cranium was collected from the SD rats born within 24 h, osteoblasts were separated, cultured and then divided into control group, ferulic acid group, LLLI group, ferulic acid + LLLI group, and the expression osteoblast differentiation markers, proliferation molecules and signaling pathway molecules were detected after continuous treatment with different conditions for three days. Results: 3 d after treatment, the Bax and Bid mRNA expression in ferulic acid group, LLLI group and ferulic acid + LLLI group of cells were significantly lower than those in control group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in control group;Bax and Bid mRNA expression in ferulic acid + LLLI group of cells were significantly lower than those in ferulic acid group and LLLI group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in ferulic acid group and LLLI group;Col-I, OC, ALP, Bax, Bid, Bcl-2, CyclinD1 and E2F mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were not significantly different between ferulic acid group and LLLI group. Conclusion: Low-level laser irradiation (LLLI) combined with ferulic acid can promote osteoblast differentiation and maturation and activate osteogenesis signaling pathway.展开更多
基金supported by the National Key R&D Program of China (No. 2017YFA0304203)the National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC)+3 种基金Changjiang Scholars and Innovative Research Team at the University of the Ministry of Education of China (No. IRT_17R70)National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108 and 627010407)111 Project (No. D18001)Fund for Shanxi (No. 1331KSC)
文摘In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.
文摘In this paper, laser induced plasma signals were analyzed during keyhole welding through three methods. According to the results, the relativity between optical and acoustic signals of plasma is shown when welds are in full-penetration, or partial-penetration and non-penetration.
基金supported by the Key Project Scientific Research Foundation from the Education Department of Hubei Province of China(Grant No D200725001)
文摘By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.
基金This project is supported by National Defense Science Foundation of China (No.614010).
文摘Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal is studied, Under the experimental conditions, the plasma optic signal has good response to variety of the weld penetration, and the signal's RMS value increases with the penetration in a quadratic curve mode. The inherent relation between the plasma optic signal and the penetration depth is also analyzed. It is also found that, between the two common parameters of laser power and welding speed, laser power has more influence on penetration while welding speed has more influence on weld width. The research results provide theoretic and practical bases for penetration real-time monitoring or predicting in partial-penetration laser welding,
基金The project supported by National Natural Science Foundation of China under Grant No.10275025
文摘A single-mode laser noise model driven by quadratic colored pump noise and amplitude modulation signal is proposed. The real and imaginary parts of the pump noise are assumed to be cross-correlation. The effect of cross- correlation of noise and amplitude modulation of signal on laser statistical properties is studied by using the linearized approximation. The analytic expression of signal-to-noise ratio (SNR) is calculated. It is found that the phenomena of stochastic resonance (SR) respectively exist in the curves of the SNR versus the noise cross-correlation coefficient λ and the SNR versus the pump parameter a, as well as the SNR versus the signal frequency ω in our model. It is shown that there are three different typies of SR in the model: the conventional form of SR, the SR in the broad sense, and the bona fide SR.
基金supported by the National Natural Science Foundation of China(61201391)
文摘The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, the imaging model of the detector, calculation model of the position and the signal-to-noise ratio(SNR) model of the circuit are built to derive both the correlation between the resolution error of the rolling angle and the spot position, and the relation between the position resolution error and the SNR. Then the influence of each parameter on the SNR is analyzed at large,and the parameters of the circuit are determined. Meanwhile, the SNR and noise voltage of the circuit are calculated according to the SNR model and the decay model of the laser energy. Finally,the actual photoelectric detection circuit is built, whose SNR is measured to be up to 53 d B. It can fully meet the requirement of0.5° for the resolution error of the rolling angle, thereby realizing the analysis of critical technology for photoelectric detection of laser seeker signals.
文摘A new method of receiving laser interferometric measuring signals, that is, method of three photoelectric cells, is presented. The advantages and favorable conditions of the method are analyzed and discussed thoroughly. This method has been successfully applied in the high precision laser interferometer.
文摘The statistical distribution of natural phenomena is of great significance in studying the laws of nature. In order to study the statistical characteristics of a random pulse signal, a random process model is proposed theoretically for better studying of the random law of measured results. Moreover, a simple random pulse signal generation and testing system is designed for studying the counting distributions of three typical objects including particles suspended in the air, standard particles, and background noise. Both normal and lognormal distribution fittings are used for analyzing the experimental results and testified by chi-square distribution fit test and correlation coefficient for comparison. In addition, the statistical laws of three typical objects and the relations between them are discussed in detail. The relation is also the non-integral dimension fractal relation of statistical distributions of different random laser scattering pulse signal groups.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275025) and Emphases Item of Education 0ffice of Hubei Province China (Grant Nos D200612001 and 2004X052).
文摘Using the linear approximation method, this paper studies the statistical property of a single-mode laser driven by both coloured pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts, and calculates the steady-state mean normalized intensity fluctuation and intensity correlation time. It analyses the influences of the modulation signal, the net gain coefficient, the noise and its correlation form on the statistical fluctuation of the laser system respectively. It is found that the coloured pump noise modulated by the signal has a great suppressing action on the statistical fluctuation of the laser system; the pump noise self-correlation time and the specific frequency of modulation signal have the result that the statistical fluctuation tends to zero. Furthermore, the 'colour' correlation of pump noise has much influences on the statistical fluctuation of the laser system. Increasing the intensity of pump noise will augment the statistical fluctuation of the laser system, but the intensity of quantum noise and the coefficient of cross-correlation between its real and imaginary parts have less influence on the statistical fluctuation of the laser system. Therefore, from the conclusions of this paper the statistical property can be known and a theoretical basis for steady operation and output of the laser system can be provided.
文摘An equivalent circuit model for the design and analysis of two-section gain lever quantum dot(QD)laser is presented.This model is based on the three level rate equations with two independent carrier populations and a single longitudinal optical mode.By using the presented model,the effect of gain lever on QD laser performances is investigated.The results of simulation show that the main characteristics of laser such as threshold current,transient response,output power and modulation response are affected by differential gain ratios between the two-sections.
文摘The statistical properties of a homogeneously broadened ring laser with an injected signal are investigated and the normalized two-mode intensity auto- and cross-correlation functions are calculated by a full saturation laser theory with backscattering. The theoretical predictions are in good agreement with the experimental measurements.Further investigation reveals that the backscattering can reduce the fluctuations in the system while the full saturation effect plays a major role when the laser is operated above threshold. It is also quite important to notice that the injected signal can drive the weak mode from incoherent light to coherent light.
基金The project supported by National Natural Science Foundation of China under Grant No. 10275025 and the Emphases Item of Education Department of Hubei Province under Grant No. 2004X052
文摘On the basis of calculating the steady-state mean normalized intensity fluctuation of a signal-mode laser system driven by both colored pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts, we analyze the influence of modulation signal, noise, and its correlation form on the statistical fluctuation of the laser system. We have found that when the amplitude of modulation signal weakens and its frequency quickens, the statistical fluctuation will reduce rapidly. The by reducing the intensity of pump noise and quantum noise. statistical fluctuation of the laser system can be restrained Moreover, with prolonging of colored cross-correlation time, the statistical fluctuation of laser system experiences a repeated changing process, that is, from decreasing to augmenting, then to decreasing, and finally to augmenting again. With the decreasing of the value of cross-correlation coe~cient, the statistical fluctuation will decrease too. When the cross-correlation form between the real part and imaginary part of quantum noise is zero correlation, the statistical fluctuation of laser system has a minimum. Compared with the influence of intensity of pump noise, the influence of intensity of quantum noise on the statistical fluctuation is smaller.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFB0402302the National Natural Science Foundation of China under Grant No 91433206
文摘Large-signal modulation capability, as an important performance indicator, is directly related to the high-speed optical communication technology involved. We experimentally and theoretically investigate the large-signal modulation characteristics of the simultaneous ground-state (GS) and the excited-state (ES) lasing in InAs/OaAs quantum dot laser diodes. The large-signal modulation capability of total light intensity in the transition regime from OS lasing to two-state lasing is unchanged as the bias-current increases. However, GS and ES large-signal eye diagrams show obvious variations during the transition. Relaxation oscillations and large-signal eye diagrams for OS, ES, and total light intensities are numerically simulated and analyzed in detail by using a rate-equation model. The -ndings show that a complementary relationship between the light intensities for OS and ES lasing exists in both the transition regime and the two-state lasing regime, leading to a much smaller overshooting power and a shorter settling time for the total light intensity. Therefore, the eye diagrams of GS or ES lasing are diffuse whereas those of total light intensity are constant as the bias-current increases in the transition regime.
文摘Numerical simulation of diode-pumped Q-switched Nd:YAG laser leading to the generation of eye-safe signal in singly resonant Intracavity Optical Parametric Oscillator (IOPO) is presented. Starting from rate equations, the time dependent laser equations have been solved numerically, whereas the space-dependent OPO equations analytically. Our results show that 1.4 J diode laser (810 nm) pulse with 200 msec width, delivers 30 mJ Nd:YAG laser (1064 nm) pulse with 5 n-second width. This Nd:YAG laser further generates 9 mJ eye safe signal (1570 nm) pulse with 2.5 n-second width.
文摘This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current signal is converted and transferred,then sent to the computer to display the final results.Through the laser gyro performance te sting,the obtained results coincide with those of the existing methods.Thus th e d esigned circuit realizes the function of laser gyro signal processing.
文摘Objective: To study the effect of low-level laser irradiation (LLLI) combined with ferulic acid on the osteoblast differentiation and maturation as well as osteogenesis signaling pathway expression. Methods: The cranium was collected from the SD rats born within 24 h, osteoblasts were separated, cultured and then divided into control group, ferulic acid group, LLLI group, ferulic acid + LLLI group, and the expression osteoblast differentiation markers, proliferation molecules and signaling pathway molecules were detected after continuous treatment with different conditions for three days. Results: 3 d after treatment, the Bax and Bid mRNA expression in ferulic acid group, LLLI group and ferulic acid + LLLI group of cells were significantly lower than those in control group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in control group;Bax and Bid mRNA expression in ferulic acid + LLLI group of cells were significantly lower than those in ferulic acid group and LLLI group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in ferulic acid group and LLLI group;Col-I, OC, ALP, Bax, Bid, Bcl-2, CyclinD1 and E2F mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were not significantly different between ferulic acid group and LLLI group. Conclusion: Low-level laser irradiation (LLLI) combined with ferulic acid can promote osteoblast differentiation and maturation and activate osteogenesis signaling pathway.