●AIM:To introduce the macular hole(MH)hydromassage technique as a potentially beneficial approach for the treatment of large or persistent MH.●METHODS:This retrospective observational case series comprised 16 consec...●AIM:To introduce the macular hole(MH)hydromassage technique as a potentially beneficial approach for the treatment of large or persistent MH.●METHODS:This retrospective observational case series comprised 16 consecutive patients(17 eyes)diagnosed with MH.Inclusion criteria involved a hole aperture diameter larger than 600μm or the presence of an unclosed MH larger than 600μm following the previous vitrectomy.Standard MH repair procedures were administered in all cases,involving the manipulation and aspiration of the hole margin through the application of water flow with a soft-tip flute needle.A comprehensive assessment was conducted for each case before and after surgery,and optical coherence tomography(OCT)images were captured at every follow-up point.●RESULTS:The mean preoperative aperture diameter was 747±156μm(range 611-1180μm),with a mean base diameter of 1390±435μm(range 578-2220μm).Following surgery,all cases achieved complete anatomical closure of MH,with 13 cases(76.5%)exhibiting type 1 closure and 4 cases(23.5%)demonstrating type 2 closure.No significant differences were observed in the preoperative OCT variables between the two closure types.Eyes with type 1 closure showed a significantly improved visual acuity(0.70±0.10,range 0.50-0.80)compared to those with type 2 closure(0.90±0.12,range 0.80-1.00,P=0.014).●CONCLUSION:The MH hydromassage technique demonstrates promising results,achieving acceptable closure rates in cases of large or persistent MH.This technique may serve as an effective adjunctive maneuver during challenging MH surgery.展开更多
Magnetic holes are magnetic depression structures that exist widely in many plasma environments.The magnetic holes with durations of>1 s in the solar wind at Mercury’s orbit have drawn much attention,but the prope...Magnetic holes are magnetic depression structures that exist widely in many plasma environments.The magnetic holes with durations of>1 s in the solar wind at Mercury’s orbit have drawn much attention,but the properties of the magnetic holes with shorter durations are still unclear.Here,we investigate the magnetic holes with durations of 0.1-100 s in the upstream region of Mercury’s bow shock based on observations by the MESSENGER(MErcury Surface,Space ENvironment,GEochemistry,and Ranging)spacecraft.They can be divided into two groups according to the distribution of their duration:small-duration magnetic holes(SDMHs,<0.6 s)and large-duration magnetic holes(LDMHs,>0.6 s).The duration of each group approximately obeys a log-normal distribution with a median of~0.25 s and 3 s,respectively.Approximately 1.7%(32.6%)of the SDMHs(LDMHs)reduce the magnetic field strength by more than 50%.For both groups,some structures have a linear or quasi-linear polarization,whereas others have an elliptical polarization.The magnetic hole events in both groups tend to have a higher rate of occurrence when the interplanetary magnetic field strength is weaker.Their occurrence rates are also affected by Mercury’s foreshock,which can increase(decrease)the occurrence rate of the SDMHs(LDMHs).This finding suggests that Mercury’s foreshock might be one source of the SDMHs and that the foreshock can destroy some LDMHs.These observations suggest that a new group of magnetic holes with durations of<0.6 s exist in the upstream region of Mercury’s bow shock.展开更多
During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadwa...During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.展开更多
By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnet...By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnetism in Einstein–Gauss–Bonnet(EGB) gravity. The results indicate that the small/large BH phase transition that is similar to the van der Waals(vdW) liquid/gas phase transition always exists for any spacetime dimensions. Interestingly, we then find that this BH system exhibits a more complex phase structure in 6-dimensional case that is missed in other dimensions.Specifically, it shows for D = 6 that we observed the small/intermediate/large BH phase transitions in a specific parameter region with the triple point naturally appeared. Moreover, when the magnetic charge turned off, we still observed the small/intermediate/large BH phase transitions and triple point only in 6-dimensional spacetime, which is consistent with the previous results. However, for the dyonic Ad S BHs with quasitopological electromagnetism in Einstein–Born–Infeld(EBI) gravity, the novel phase structure composed of two separate coexistence curves observed by Li et al. [Phys. Rev. D105 104048(2022)] disappeared in EGB gravity. This implies that this novel phase structure is closely related to gravity theories, and seems to have nothing to do with the effect of quasitopological electromagnetism. In addition, it is also true that the critical exponents calculated near the critical points possess identical values as mean field theory. Finally, we conclude that these findings shall provide some deep insights into the intriguing thermodynamic properties of the dyonic Ad S BHs with quasitopological electromagnetism in EGB gravity.展开更多
The Newton’s theory of universal gravitation is generalized. Significantly strong at short distances central interaction of bodies and particles is established in comparison with Newtonian. A connection is found with...The Newton’s theory of universal gravitation is generalized. Significantly strong at short distances central interaction of bodies and particles is established in comparison with Newtonian. A connection is found with Black Holes, with the horizon of events. Possibility of systematization of all Black Holes is shown. An illustration is given on the example of Black Hole S<sub>gr</sub>A*.展开更多
A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefin...A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefinite-difference time-domain method,the parameters of the M-PCNC,including cavity thickness and width,lattice constant,and radii and numbers of holes,are optimized,with the quality factor Q and mode volume Vm as performance indicators.Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance.The optimized cavity possesses a high quality factor Q 1.45105 and an ultra-small mode=×volume Vm 0.01(λ/n)[Zeng et al.,Opt Lett 2023:48;3981–3984]in the telecommunications wavelength range.Light can be progres-=sively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure.Thereby,the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio.展开更多
Recently,observational hints for supermassive black holes have been accumulating,prompting the question:Can primordial black holes(PBHs)be supermassive,particularly with masses M■10^(9)M_(⊙)?A supercritical bubble,c...Recently,observational hints for supermassive black holes have been accumulating,prompting the question:Can primordial black holes(PBHs)be supermassive,particularly with masses M■10^(9)M_(⊙)?A supercritical bubble,containing an inflating baby universe,that nucleated during inflation can evolve into a PBH in our observable universe.We find that when the inflaton slowly transitions past a neighboring vacuum,the nucleation rate of supercritical bubbles inevitably peaks,leading to a mass distribution of multiverse PBHs with a peak mass up to M■10^(11)M_(⊙).Thus,our mechanism naturally provides a primordial origin for supermassive black holes.展开更多
The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applyi...The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.展开更多
The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and res...The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and results are described and carried out. Results indicate that heat transfer coefficient (HTC) is increased with the increase of blowing ratio. When the blowing ratio is lower, the distribution of HTC along the heated wall can be divided into three regions. For larger blowing ratio or diameter, the cooling characteristics oi parallel-inlet film holes are similar to those of convective heat transfer around flat. Furthermore, when hole diameter is deter- mined, the arrangement patterns of film hole and the blowing ratio take a great influence on HTC.展开更多
A substrate hot holes injection method is used to quantitatively examine the roles of electrons and holes separately in thin gate oxides breakdown.The shift of threshold voltage under different stress is discussed.It ...A substrate hot holes injection method is used to quantitatively examine the roles of electrons and holes separately in thin gate oxides breakdown.The shift of threshold voltage under different stress is discussed.It is indicated that positive charges are trapped in SiO 2 while hot electrons are necessary for SiO 2 breakdown.The anode holes injection model and the electron traps generation model is linked into a consistent model,describing the oxide wearout as an electron correlated holes trap creation process.The results show that the limiting factor in thin gate oxides breakdown depends on the balance between the amount of injected hot electrons and holes.The gate oxides breakdown is a two step process.The first step is hot electron's breaking Si-O bonds and producing some dangling bonds to be holes traps.Then the holes are trapped and a conducted path is produced in the oxides.The joint effect of hot electrons and holes makes the thin gate oxides breakdown complete.展开更多
Force analysis using a compact tension model, as recommended by ASTM, was carried out on a crack stop hole. The stress before, and after, drilling the hole was compared in terms of stress concentration and stress grad...Force analysis using a compact tension model, as recommended by ASTM, was carried out on a crack stop hole. The stress before, and after, drilling the hole was compared in terms of stress concentration and stress gradient. The optimum drilling location and diameter were studied through analysis of different locations and diameters. By analyzing the effects of flank holes and an additional hole, drilling advice was proposed and fatigue testing of the cracks in a steel bridge deck with a crack stop hole was conducted. The results show that the stress at the crack tip with a crack stop hole decreased, and the major principal stress around the hole was distributed accordingly. The optimum position of the crack stop hole centre was where the centre of the crack stop hole was situated behind the crack and the hole edge coincided with the crack tip. Therefore, hole diameters larger than 8 mm, or those weakening the section by 10%, were suggested as the best diameters. In terms of multi-hole crack stopping, a flank hole was not recommended. The optimum horizontal position of flank holes was at a distance of 1/4 of a single hole diameter from, and in front of, the single hole. Besides, the experiment showed that crack stop hole could only prevent cracks from growing and had no influence on crack growth rate.展开更多
The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low s...The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low specific-speed centrifugal pump with Q=12.5 m3/h, H=60 m, n=2950 r/min was selected to be designed with eight axial reflux balance holes with 4.5 mm in diameter. The simulated Q-H curve and net positive suction head(NPSH) were in good agreement with experimental results, which illustrated that centrifugal pump with axial reflux balance holes was superior in the cavitation characteristic; however, it showed to little superiority in head and efficiency. The pressure in rear pump chamber at 0.6 times rate flow is 29.36% of pressure difference between outlet and inlet, which reduces to 29.10% at rate flow and 28.33% at 1.4 times rate flow. As the whole, the pressure distribution on front and rear shrouds from simulation results is not a standard parabola, and axial force decreases as flow rate increases. Radical reflux balance holes chosen to be 5.2 mm and 5.9 mm in diameter were further designed with other hydraulic parts unchanged. With structural grids adopted for total flow field, contrast numerical simulation on internal flow characteristics was conducted based on momentum equations and standard turbulence model(κ-ε). It is found that axial force of pump with radical reflux balance holes of5.2 mm and 5.9 mm in diameter is significantly less than that with radical reflux balance holes of 4.5 mm in diameter. Better axial force balance is obtained as the ratio of area of reflux balance holes and area of sealing ring exceeds 6.展开更多
A new simpler mathematic method is proposed to study fermions tunneling from black holes. According to this method, by using semiclassical approximation theory, it simplifies the Dirac equation of curved spacetime and...A new simpler mathematic method is proposed to study fermions tunneling from black holes. According to this method, by using semiclassical approximation theory, it simplifies the Dirac equation of curved spacetime and then the relationship of the gamma matrix and the component of contravariant metric is considered in order to transform the set of difficult quantum equations into a simple equation. Finally, the fermion tunneling and Hawking radiation of black holes are obtained. The method is very effective and simple, and we will take the Schwarzschild black hole with global monopole and the higher-dimensional Reissner-Nordstrom de Sitter black hole as two examples to show the fact.展开更多
We present a bio-inspired strategy for designing embedded strain sensors in space structures. In insects, the campaniform sensillum is a hole extending through the cuticle arranged such that its shape changes in respo...We present a bio-inspired strategy for designing embedded strain sensors in space structures. In insects, the campaniform sensillum is a hole extending through the cuticle arranged such that its shape changes in response to loads. The shape change is rotated through 90° by the suspension of a bell-shaped cap whose deflection is detected by a cell beneath the cuticle. It can be sensitive to displacements of the order of 1 nm. The essential morphology, a hole formed in a plate of fibrous composite mate- rial, was modelled by Skordos et al. who showed that global deformation of the plate (which can be flat, curved or a tube) induces higher local deformation of the hole due to its locally higher compliance. Further developments reported here show that this approach can be applied to groups of holes relative to their orientation. , The morphology of the sensillum in insects suggests that greater sensitivity can be achieved by arranging several holes in a regular pattern; that if the hole is oval it can be "aimed" to sense specific strain directions; and that either by controlling the shape of the hole or its relationship with other holes it can have a tuned response to dynamic strains. We investigate space applications in which novel bio-inspired strain sensors could successfully be used.展开更多
AIM: To report the surgical technique and efficacy of the tiled transplantation internal limiting membrane(ILM) pedicle flap technique after vitrectomy for 33 patients with large macular hole(MH). METHODS: This study...AIM: To report the surgical technique and efficacy of the tiled transplantation internal limiting membrane(ILM) pedicle flap technique after vitrectomy for 33 patients with large macular hole(MH). METHODS: This study was a prospective noncontrolled interventional study. All patients were treated by vitrectomy, the tiled transplantation ILM pedicle flap and gas tamponade. All patients underwent visual acuity measurements and optical coherence tomography(OCT), during preoperative and the follow-up visits postoperative. RESULTS: Two high-myopic patient had flap dislocation during surgery. The thorough closure of MH following the tiled transplantation ILM pedicle flap technique was ultimately achieved in 31 patients observed by OCT imaging(93.94%) 1 wk after surgery. Visual acuity improved from 1.51±0.31(logMAR) preoperative to 0.92±0.30 6 mo after surgery(P=0.000). There were no significant changes in OCT finding during the follow-up period from 1 mo to 6 mo after surgery. CONCLUSION: The tiled transplantation ILM pedicle flap technique provides bridge for retinal gliosis to achieve successful closures of the large MHs, and the microenvironment of this technique is more similar to the normal physiological conditions.展开更多
With the development of fracture mechanics,the fracture plane control blasting with notched borcholes hascome into being.This technique is used to create a satisfactory presplit along the contour of an excavation inro...With the development of fracture mechanics,the fracture plane control blasting with notched borcholes hascome into being.This technique is used to create a satisfactory presplit along the contour of an excavation inrock.However,the amount of explosive loaded in each hol usually is determined by trial and error.Because ofthis,two approaches estimating the amount of explosive for the blasting technique are suggested.展开更多
AIM:To assess the efficacy and safety of parafoveal retinal massage combined with autologous whole blood cover in the treatment of refractory macular holes(MHs)and present the surgical procedure.METHODS:Patients with ...AIM:To assess the efficacy and safety of parafoveal retinal massage combined with autologous whole blood cover in the treatment of refractory macular holes(MHs)and present the surgical procedure.METHODS:Patients with giant(minimum diameter>800 pm),recurrent or persistent MHs who underwent PPV combined with parafoveal retinal massage and autologous whole blood cover using C3F8 as tamponade agent from February 2018 to May 2019 were enrolled in this retrospective study.After surgery,all patients were informed to maintain a prone position for at least 7d.Preoperative and postoperative best-corrected visual acuities(BCVAs)were compared and MH closure rate was measured as the main outcome.RESULTS:A total of 13 MH patients consisted of 6 giant MHs,4 persistent holes and 3 recurrent holes(5 men and 8 women;average age was 56.40±11.72y)were enrolled in this study.MH closure was achieved in 11 eyes by this modified surgical technique while 2 eyes failed.Revitrectomy with autologous neurosensory retinal patch transplantations was applied for those 2 patients and then both holes were closed.No intraoperative complications were observed.BCVA improved from 1.73 IogMAR to 0.74 IogMAR at 6mo postoperation.There was significant difference in BCVA before versus after the surgery(P<0.05).There were no adverse events occurred during the follow-up period.CONCLUSION:With easier surgical procedure,parafoveal retinal massage combined with autologous whole blood cover is an effective addition to the surgical options for the management of refractory MHs.展开更多
The gas turbine blades with diffusion film cooling holes are newlydeveloped blade struc- tures in the hydrogen combustion gas turbine,which has an extremely high inlet gas temperature (1700 deg. C). TheFluid Machinery...The gas turbine blades with diffusion film cooling holes are newlydeveloped blade struc- tures in the hydrogen combustion gas turbine,which has an extremely high inlet gas temperature (1700 deg. C). TheFluid Machinery Laboratory of Nagoya Institute o Technology conductedfirstly a new research o the turbulent flow field over the gasturbine blade with diffusion film cooling holes in Japan. Normal-typeand X-ray hot wires were applied in the measurement of the flowfield.展开更多
基金Supported by National Natural Science Foundation of China(NSFC)fund(No.81970815).
文摘●AIM:To introduce the macular hole(MH)hydromassage technique as a potentially beneficial approach for the treatment of large or persistent MH.●METHODS:This retrospective observational case series comprised 16 consecutive patients(17 eyes)diagnosed with MH.Inclusion criteria involved a hole aperture diameter larger than 600μm or the presence of an unclosed MH larger than 600μm following the previous vitrectomy.Standard MH repair procedures were administered in all cases,involving the manipulation and aspiration of the hole margin through the application of water flow with a soft-tip flute needle.A comprehensive assessment was conducted for each case before and after surgery,and optical coherence tomography(OCT)images were captured at every follow-up point.●RESULTS:The mean preoperative aperture diameter was 747±156μm(range 611-1180μm),with a mean base diameter of 1390±435μm(range 578-2220μm).Following surgery,all cases achieved complete anatomical closure of MH,with 13 cases(76.5%)exhibiting type 1 closure and 4 cases(23.5%)demonstrating type 2 closure.No significant differences were observed in the preoperative OCT variables between the two closure types.Eyes with type 1 closure showed a significantly improved visual acuity(0.70±0.10,range 0.50-0.80)compared to those with type 2 closure(0.90±0.12,range 0.80-1.00,P=0.014).●CONCLUSION:The MH hydromassage technique demonstrates promising results,achieving acceptable closure rates in cases of large or persistent MH.This technique may serve as an effective adjunctive maneuver during challenging MH surgery.
基金the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2022041)the National Natural Science Foundation of China(Grant Nos.42241155,41974205,42130204,and 42241133)+4 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022A1515011698,2023A1515030132,and 2022A1515010257)the Shenzhen Science and Technology Research Program(Grant Nos.JCYJ20210324121412034 and JCYJ20210324121403009)the Shenzhen Key Laboratory Launching Project(Grant No.ZDSYS20210702140800001)the Joint Open Fund of Mengcheng National Geophysical Observatory(Grant No.MENGO-202315)the Macao Foundation,the pre-research Project on Civil Aerospace Technologies(Grant No.D020103)funded by the China National Space Administration,and the Chinese Academy of Sciences Center for Excellence in Comparative Planetology。
文摘Magnetic holes are magnetic depression structures that exist widely in many plasma environments.The magnetic holes with durations of>1 s in the solar wind at Mercury’s orbit have drawn much attention,but the properties of the magnetic holes with shorter durations are still unclear.Here,we investigate the magnetic holes with durations of 0.1-100 s in the upstream region of Mercury’s bow shock based on observations by the MESSENGER(MErcury Surface,Space ENvironment,GEochemistry,and Ranging)spacecraft.They can be divided into two groups according to the distribution of their duration:small-duration magnetic holes(SDMHs,<0.6 s)and large-duration magnetic holes(LDMHs,>0.6 s).The duration of each group approximately obeys a log-normal distribution with a median of~0.25 s and 3 s,respectively.Approximately 1.7%(32.6%)of the SDMHs(LDMHs)reduce the magnetic field strength by more than 50%.For both groups,some structures have a linear or quasi-linear polarization,whereas others have an elliptical polarization.The magnetic hole events in both groups tend to have a higher rate of occurrence when the interplanetary magnetic field strength is weaker.Their occurrence rates are also affected by Mercury’s foreshock,which can increase(decrease)the occurrence rate of the SDMHs(LDMHs).This finding suggests that Mercury’s foreshock might be one source of the SDMHs and that the foreshock can destroy some LDMHs.These observations suggest that a new group of magnetic holes with durations of<0.6 s exist in the upstream region of Mercury’s bow shock.
基金National Natural Science Foundation of China(Grant Nos.52174080 and 51974160)Science Foundation of Tiandi Technology Co.,Ltd.(2022-2-TD-ZD016).
文摘During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.
基金supported by the National Natural Science Foundation of China (Grant No. 11903025)the Starting Fund of China West Normal University (Grant No. 18Q062)+2 种基金the Sichuan Science and Technology Program (Grant No. 2023ZYD0023)the Sichuan Youth Science and Technology Innovation Research Team (Grant No. 21CXTD0038)the Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC1833)。
文摘By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnetism in Einstein–Gauss–Bonnet(EGB) gravity. The results indicate that the small/large BH phase transition that is similar to the van der Waals(vdW) liquid/gas phase transition always exists for any spacetime dimensions. Interestingly, we then find that this BH system exhibits a more complex phase structure in 6-dimensional case that is missed in other dimensions.Specifically, it shows for D = 6 that we observed the small/intermediate/large BH phase transitions in a specific parameter region with the triple point naturally appeared. Moreover, when the magnetic charge turned off, we still observed the small/intermediate/large BH phase transitions and triple point only in 6-dimensional spacetime, which is consistent with the previous results. However, for the dyonic Ad S BHs with quasitopological electromagnetism in Einstein–Born–Infeld(EBI) gravity, the novel phase structure composed of two separate coexistence curves observed by Li et al. [Phys. Rev. D105 104048(2022)] disappeared in EGB gravity. This implies that this novel phase structure is closely related to gravity theories, and seems to have nothing to do with the effect of quasitopological electromagnetism. In addition, it is also true that the critical exponents calculated near the critical points possess identical values as mean field theory. Finally, we conclude that these findings shall provide some deep insights into the intriguing thermodynamic properties of the dyonic Ad S BHs with quasitopological electromagnetism in EGB gravity.
文摘The Newton’s theory of universal gravitation is generalized. Significantly strong at short distances central interaction of bodies and particles is established in comparison with Newtonian. A connection is found with Black Holes, with the horizon of events. Possibility of systematization of all Black Holes is shown. An illustration is given on the example of Black Hole S<sub>gr</sub>A*.
基金supported by the Open Fund of the State Key Laboratory of Advanced Optical Communication Systems and Networks (SJTU)(Grant No. 2023GZKF018)the Open Fund of IPOC (BUPT)(Grant No. IPOC2021B03)+4 种基金the National Natural Science Foundation of China (NSFC)(Grant No. 11974188)the China Postdoctoral Science Foundation (Grant Nos. 2021T140339 and 2018M632345)the Jiangsu Province Postdoctoral Science Foundation (Grant No. 2021K617C)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No.KYCX22_0945)the Qing Lan Project of Jiangsu Province
文摘A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefinite-difference time-domain method,the parameters of the M-PCNC,including cavity thickness and width,lattice constant,and radii and numbers of holes,are optimized,with the quality factor Q and mode volume Vm as performance indicators.Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance.The optimized cavity possesses a high quality factor Q 1.45105 and an ultra-small mode=×volume Vm 0.01(λ/n)[Zeng et al.,Opt Lett 2023:48;3981–3984]in the telecommunications wavelength range.Light can be progres-=sively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure.Thereby,the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio.
基金supported by the National Natural Science Foundation of China(NSFC,grant No.12075246)the Fundamental Research Funds for the Central Universities+5 种基金the Fundamental Research Funds for the Central Universities(grant No.E2EG6602X2 and grant No.E2ET0209X2)supported in part by the Natural Science Foundation of Henan Province and Zhengzhou University(grant Nos.242300420231,JC23149007,35220136)the China Postdoctoral Science Foundation(grant No.2021M692942)the NSFC(grant No.11905224)the NSFC(grant No,12147103)supported by the scientific research starting grants from University of Chinese Academy of Sciences(grant No.118900M061)。
文摘Recently,observational hints for supermassive black holes have been accumulating,prompting the question:Can primordial black holes(PBHs)be supermassive,particularly with masses M■10^(9)M_(⊙)?A supercritical bubble,containing an inflating baby universe,that nucleated during inflation can evolve into a PBH in our observable universe.We find that when the inflaton slowly transitions past a neighboring vacuum,the nucleation rate of supercritical bubbles inevitably peaks,leading to a mass distribution of multiverse PBHs with a peak mass up to M■10^(11)M_(⊙).Thus,our mechanism naturally provides a primordial origin for supermassive black holes.
文摘The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.
文摘The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and results are described and carried out. Results indicate that heat transfer coefficient (HTC) is increased with the increase of blowing ratio. When the blowing ratio is lower, the distribution of HTC along the heated wall can be divided into three regions. For larger blowing ratio or diameter, the cooling characteristics oi parallel-inlet film holes are similar to those of convective heat transfer around flat. Furthermore, when hole diameter is deter- mined, the arrangement patterns of film hole and the blowing ratio take a great influence on HTC.
文摘A substrate hot holes injection method is used to quantitatively examine the roles of electrons and holes separately in thin gate oxides breakdown.The shift of threshold voltage under different stress is discussed.It is indicated that positive charges are trapped in SiO 2 while hot electrons are necessary for SiO 2 breakdown.The anode holes injection model and the electron traps generation model is linked into a consistent model,describing the oxide wearout as an electron correlated holes trap creation process.The results show that the limiting factor in thin gate oxides breakdown depends on the balance between the amount of injected hot electrons and holes.The gate oxides breakdown is a two step process.The first step is hot electron's breaking Si-O bonds and producing some dangling bonds to be holes traps.Then the holes are trapped and a conducted path is produced in the oxides.The joint effect of hot electrons and holes makes the thin gate oxides breakdown complete.
基金Projects(51278166,51478163)supported by the National Natural Science Foundation of ChinaProject(2015B17414)supported by the Fundamental Research Funds for the Central Universities,China
文摘Force analysis using a compact tension model, as recommended by ASTM, was carried out on a crack stop hole. The stress before, and after, drilling the hole was compared in terms of stress concentration and stress gradient. The optimum drilling location and diameter were studied through analysis of different locations and diameters. By analyzing the effects of flank holes and an additional hole, drilling advice was proposed and fatigue testing of the cracks in a steel bridge deck with a crack stop hole was conducted. The results show that the stress at the crack tip with a crack stop hole decreased, and the major principal stress around the hole was distributed accordingly. The optimum position of the crack stop hole centre was where the centre of the crack stop hole was situated behind the crack and the hole edge coincided with the crack tip. Therefore, hole diameters larger than 8 mm, or those weakening the section by 10%, were suggested as the best diameters. In terms of multi-hole crack stopping, a flank hole was not recommended. The optimum horizontal position of flank holes was at a distance of 1/4 of a single hole diameter from, and in front of, the single hole. Besides, the experiment showed that crack stop hole could only prevent cracks from growing and had no influence on crack growth rate.
基金Project(51179075)supported by the National Natural Science Foundation of ChinaProject(BK20131256)supported by the Natural Science Funds of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu High Education Institutions,China
文摘The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low specific-speed centrifugal pump with Q=12.5 m3/h, H=60 m, n=2950 r/min was selected to be designed with eight axial reflux balance holes with 4.5 mm in diameter. The simulated Q-H curve and net positive suction head(NPSH) were in good agreement with experimental results, which illustrated that centrifugal pump with axial reflux balance holes was superior in the cavitation characteristic; however, it showed to little superiority in head and efficiency. The pressure in rear pump chamber at 0.6 times rate flow is 29.36% of pressure difference between outlet and inlet, which reduces to 29.10% at rate flow and 28.33% at 1.4 times rate flow. As the whole, the pressure distribution on front and rear shrouds from simulation results is not a standard parabola, and axial force decreases as flow rate increases. Radical reflux balance holes chosen to be 5.2 mm and 5.9 mm in diameter were further designed with other hydraulic parts unchanged. With structural grids adopted for total flow field, contrast numerical simulation on internal flow characteristics was conducted based on momentum equations and standard turbulence model(κ-ε). It is found that axial force of pump with radical reflux balance holes of5.2 mm and 5.9 mm in diameter is significantly less than that with radical reflux balance holes of 4.5 mm in diameter. Better axial force balance is obtained as the ratio of area of reflux balance holes and area of sealing ring exceeds 6.
基金supported by the National Natural Science Foundation of China(Grant Nos.10773008 and 11075224)the Chongqing University Postgraduates Science and Innovation Fund,China(Grant No.200811B1A0100299)
文摘A new simpler mathematic method is proposed to study fermions tunneling from black holes. According to this method, by using semiclassical approximation theory, it simplifies the Dirac equation of curved spacetime and then the relationship of the gamma matrix and the component of contravariant metric is considered in order to transform the set of difficult quantum equations into a simple equation. Finally, the fermion tunneling and Hawking radiation of black holes are obtained. The method is very effective and simple, and we will take the Schwarzschild black hole with global monopole and the higher-dimensional Reissner-Nordstrom de Sitter black hole as two examples to show the fact.
文摘We present a bio-inspired strategy for designing embedded strain sensors in space structures. In insects, the campaniform sensillum is a hole extending through the cuticle arranged such that its shape changes in response to loads. The shape change is rotated through 90° by the suspension of a bell-shaped cap whose deflection is detected by a cell beneath the cuticle. It can be sensitive to displacements of the order of 1 nm. The essential morphology, a hole formed in a plate of fibrous composite mate- rial, was modelled by Skordos et al. who showed that global deformation of the plate (which can be flat, curved or a tube) induces higher local deformation of the hole due to its locally higher compliance. Further developments reported here show that this approach can be applied to groups of holes relative to their orientation. , The morphology of the sensillum in insects suggests that greater sensitivity can be achieved by arranging several holes in a regular pattern; that if the hole is oval it can be "aimed" to sense specific strain directions; and that either by controlling the shape of the hole or its relationship with other holes it can have a tuned response to dynamic strains. We investigate space applications in which novel bio-inspired strain sensors could successfully be used.
基金Supported by the Shaanxi Provincial Social Development Scientific and Technological Project(No.2016SF-133)
文摘AIM: To report the surgical technique and efficacy of the tiled transplantation internal limiting membrane(ILM) pedicle flap technique after vitrectomy for 33 patients with large macular hole(MH). METHODS: This study was a prospective noncontrolled interventional study. All patients were treated by vitrectomy, the tiled transplantation ILM pedicle flap and gas tamponade. All patients underwent visual acuity measurements and optical coherence tomography(OCT), during preoperative and the follow-up visits postoperative. RESULTS: Two high-myopic patient had flap dislocation during surgery. The thorough closure of MH following the tiled transplantation ILM pedicle flap technique was ultimately achieved in 31 patients observed by OCT imaging(93.94%) 1 wk after surgery. Visual acuity improved from 1.51±0.31(logMAR) preoperative to 0.92±0.30 6 mo after surgery(P=0.000). There were no significant changes in OCT finding during the follow-up period from 1 mo to 6 mo after surgery. CONCLUSION: The tiled transplantation ILM pedicle flap technique provides bridge for retinal gliosis to achieve successful closures of the large MHs, and the microenvironment of this technique is more similar to the normal physiological conditions.
文摘With the development of fracture mechanics,the fracture plane control blasting with notched borcholes hascome into being.This technique is used to create a satisfactory presplit along the contour of an excavation inrock.However,the amount of explosive loaded in each hol usually is determined by trial and error.Because ofthis,two approaches estimating the amount of explosive for the blasting technique are suggested.
文摘AIM:To assess the efficacy and safety of parafoveal retinal massage combined with autologous whole blood cover in the treatment of refractory macular holes(MHs)and present the surgical procedure.METHODS:Patients with giant(minimum diameter>800 pm),recurrent or persistent MHs who underwent PPV combined with parafoveal retinal massage and autologous whole blood cover using C3F8 as tamponade agent from February 2018 to May 2019 were enrolled in this retrospective study.After surgery,all patients were informed to maintain a prone position for at least 7d.Preoperative and postoperative best-corrected visual acuities(BCVAs)were compared and MH closure rate was measured as the main outcome.RESULTS:A total of 13 MH patients consisted of 6 giant MHs,4 persistent holes and 3 recurrent holes(5 men and 8 women;average age was 56.40±11.72y)were enrolled in this study.MH closure was achieved in 11 eyes by this modified surgical technique while 2 eyes failed.Revitrectomy with autologous neurosensory retinal patch transplantations was applied for those 2 patients and then both holes were closed.No intraoperative complications were observed.BCVA improved from 1.73 IogMAR to 0.74 IogMAR at 6mo postoperation.There was significant difference in BCVA before versus after the surgery(P<0.05).There were no adverse events occurred during the follow-up period.CONCLUSION:With easier surgical procedure,parafoveal retinal massage combined with autologous whole blood cover is an effective addition to the surgical options for the management of refractory MHs.
文摘The gas turbine blades with diffusion film cooling holes are newlydeveloped blade struc- tures in the hydrogen combustion gas turbine,which has an extremely high inlet gas temperature (1700 deg. C). TheFluid Machinery Laboratory of Nagoya Institute o Technology conductedfirstly a new research o the turbulent flow field over the gasturbine blade with diffusion film cooling holes in Japan. Normal-typeand X-ray hot wires were applied in the measurement of the flowfield.