Near-nadir observations by the Multispectral Instrument (MSI) onboard the Sentinel-2 and the Operational Land Imager (OLI) onboard Landsat 8 were collected during two Simultaneous Nadir Overpasses (SNO). Multispectral...Near-nadir observations by the Multispectral Instrument (MSI) onboard the Sentinel-2 and the Operational Land Imager (OLI) onboard Landsat 8 were collected during two Simultaneous Nadir Overpasses (SNO). Multispectral images with 10, 20, and 30 m resolution from a spatially uniform area in the Saharan desert were acquired for direct comparison of MSI and OLI Top- Of-Atmosphere (TOA) reflectances. This paper presents an initial radiometric cross-calibration of the 8 corresponding spectral bands of the Sentinel-2 MSI and Landsat 8 OLI sensors. With the well-calibrated Landsat 8 OLI as a reference, the comparison indicates that 6 MSI bands are consistent with OLI within 3% in terms of spectral band adjustment factors Bi . The Near-Infra-Red (NIR) and cirrus bands are exceptions. They yield radiometric differences on the order of 8% and 15% respectively. Cross-calibration results show that the radiometric difference of the 7 corresponding bands are consistent to OLI within 1% or better, except on cirrus band. A pixel-by-pixel match between the MSI and OLI observations for different land covers showed that. This initial study suggests that the red-edge band B8A of MSI can be used to replace the NIR band B08 when conducting vegetation monitoring.展开更多
In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM)...In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.展开更多
The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life...The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life is 8 years. In order to monitor and correct the radiometric performance of the imager for a long time and meet the user’s demand for the quantitative remote sensing application, the expandable diffuser used for calibration in full FOV and full optical path method is designed. The solar diffuser is installed on the front side of the optical system and does not affect the normal imaging of VIMI. When VIMI need calibration, the diffuser is expand to the front of optical system via the driving mechanism. According to the characteristics of the GF-5 satellite orbit, the requirement of the calibration energy and the installation matrix of the imager relative to the satellite, the expansion angle of the diffuser is 39 degrees. The 430 mm × 430 mm large-size PTEE diffuser is manufactured to ensure full FOV and full optical path calibration. The diffuser’s directional hemispherical reflectance is higher than 95% from 420 nm to 2400 nm and variation of BRDF in the direction of imager observation is better than 2.5%. The diffuser stability monitoring radiometer is designed to monitor the on-orbit attenuation performance of the diffuser. Results of ground simulation experiments and preliminary on-board calibration experiments were introduced.展开更多
The first research and experimental results obtained in China of high-accuracy radiometric calibration based on cryogenic radiometer are reported. Uncertainties of cryogenic radiometer and trap detectors at 7 waveleng...The first research and experimental results obtained in China of high-accuracy radiometric calibration based on cryogenic radiometer are reported. Uncertainties of cryogenic radiometer and trap detectors at 7 wavelengths in the visible spectrum (488-786 nm) were less than 0.023% and 0.035% respectively, which proved the reasonability and possibility of establishing and transferring high-accuracy radiometric standards based on detectors.展开更多
The calibration experiment data at Dunhuang radiometric calibration site in October, 2008 were used to achieve the on-orbit radiometric calibration for HJ-1A hyper spectral imager (HSI). Two other field experiments da...The calibration experiment data at Dunhuang radiometric calibration site in October, 2008 were used to achieve the on-orbit radiometric calibration for HJ-1A hyper spectral imager (HSI). Two other field experiments data were used to validate the Dunhuang calibration results. One field experiment took place in Inner-Mongolia, China in September, 2008, and the other field experiment took place in Lake Frome, Australia in February, 2009. Finally, the ‘confidence interval of calibration error’ concept was put forward for quantitatively computing the calibration coefficient error confidence interval. The results showed that the Dunhuang calibration results in 2008 had high reliability. The confidence intervals of calibration error for all HSI channels were between 2% to 12%, which could satisfy the requirement of the HSI quantitative applications.展开更多
For the problem of in-flight test site radiometric calibration for the FY-1D Meteorological Satellite onboard sensor's visible and near infrared channels,this paper described the calibration method,satellite-groun...For the problem of in-flight test site radiometric calibration for the FY-1D Meteorological Satellite onboard sensor's visible and near infrared channels,this paper described the calibration method,satellite-ground synchronous observation data acquired at China Dunhuang Calibration Test Site,parameter derivation and radiative transfer computation during the calibration,and the calibration result analysis.At FY-1D seven channels (with central wavelength at Channels 1:630 nm,2:865 nm;6:1610 nm;7:455 nm,8:505 nm;9:555 nm;10:932 nm),calibration coefficients obtained during the ground site calibration were compared with that respectively of pre- launch calibration.It is demonstrated that results of FY-1D onboard two sensors' (A and B) at channels 1,2,6 and 10 were close to pre-calibration,and the absolute difference of Gobi desert reflectance computed using test site and pre-launch calibration coefficients was no more than 2%. At other channels,large pre-launch calibration errors resulted in a poor consistency between the test site and pre-launch calibration.The errors can be corrected by the test site calibration results. Based on a rough estimation,the overall error of the calibration was about 6%. The paper also presented the in-flight vicarious calibration at the visible and near infrared channels of FY-1C sensor A which was launched in 1999 and has been put into operational mode since 2002.The results exhibit that FY-1C sensor's response has 23% attenuation at Channels 7 and 8,while only minor degradation at the other channels was found. During the mission,calibrations were also conducted at NOAA-17's Channels 1 and 2 (1:430 -830 nm,2:500--1072 nm).A very good consistency has been achieved between the test site and pre-launched calibration results.展开更多
The radiometric calibration of remote sensors is a basis and prerequisite of information quantification in remote sensing. This paper proposes a method for outdoor relative radiometric calibration using gray scale tar...The radiometric calibration of remote sensors is a basis and prerequisite of information quantification in remote sensing. This paper proposes a method for outdoor relative radiometric calibration using gray scale targets. In this method, the idea of two substitutions is adopted. Sunlight is used to replace the integrating sphere light source, and gray scale targets are used to re-place the diffuser. In this way, images at different radiance levels obtained outdoors can calculate the relative radiometric cali-bration coefficients using the least square method. The characteristics of this method are as follows. Firstly, compared with la-boratory calibration, it greatly reduces the complexity of the calibration method and the test cost. Secondly, compared with the existing outdoor relative radiometric calibration of a single radiance level, it uses test images of different radiance levels to re-duce errors. Thirdly, it is easy to operate with fewer environmental requirements, has obvious advantages in the rapid calibra-tion of airborne remote sensors before or after flight and is practical in engineering. This paper theoretically and experimental-ly proves the feasibility of this method. Calibration experiments were conducted on the wide-view multispectral imager (WVMI) using this method, and the precision of this method was evaluated by analyzing the corrected images of large uniform targets on ground. The experiment results have demonstrated that the new method is effective and its precision meets the re-quirement of the absolute radiometric calibration.展开更多
The instrument cross-calibration is an effective way to assess the quality of satellite data. In this study, a new method is proposed to cross-calibrate the sensors among satellite instruments by using a RObotic Lunar...The instrument cross-calibration is an effective way to assess the quality of satellite data. In this study, a new method is proposed to cross-calibrate the sensors among satellite instruments by using a RObotic Lunar Observatory(ROLO) model and Apollo sample reflectance in reflective solar bands(RSBs). The ROLO model acts as a transfer radiometer to bridge between the instruments. The reflective spectrum of the Apollo sample is used to compensate for the difference in the instrument's relative spectral responses(RSRs). In addition, the double ratio between the observed lunar irradiance and the simulated lunar irradiance is used to reduce the difference in instrument lunar viewing and illumining geometry. This approach is applied to the Moderate Resolution Imaging Spectroradiometer(MODIS), the Sea-Viewing Wide Field-of-View Sensor(Sea Wi FS), and the Advanced Land Imager(ALI) on board three satellites, respectively. The mean difference between MODIS and Sea Wi FS is less than 3.14%, and the difference between MODIS and ALI is less than 4.75%. These results indicate that the proposed cross-calibration method not only compensates for the RSR mismatches but also reduces the differences in lunar observation geometry. Thus,radiance calibration of any satellite instrument can be validated with a reference instrument bridged by the moon.展开更多
In the field of biomass estimation,terrain radiometric calibration of airborne polarimetric SAR data for forested areas is an urgent problem.Illuminated area correction ofσ-naught could not completely remove terrain ...In the field of biomass estimation,terrain radiometric calibration of airborne polarimetric SAR data for forested areas is an urgent problem.Illuminated area correction ofσ-naught could not completely remove terrain features.Inspired by Small and Shimada,this paper tested gamma-naught on one mountainous forested area using airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar data and found it could remove most terrain features.However,a systematic increasing trend from far range to near range is found in airborne SAR cases.This paper made an attempt to use the relationship between distance to SAR sensor andγ-naught to calibrateγ-naught.Two quantitative evaluation methods are proposed.Experimental results demonstrate that variation ofγ-naught can be constrained to a limited extent from near range to far range.Since this method is based on ground range images,it avoids complicated orthorectification.展开更多
Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of s...Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of source, an on-orbit radiometric calibration method is designed in this paper. This chain is based on the spectral inversion accuracy of the calibration light source. We compile the genetic algorithm progress which is used to optimize the channel design of the transfer radiometer and consider the degradation of the halogen lamp, thus realizing the high accuracy inversion of spectral curve in the whole working time. The experimental results show the average root mean squared error is 0.396%, the maximum root mean squared error is 0.448%, and the relative errors at all wavelengths are within 1% in the spectral range from 500 nm to 900 nm during 100 h operating time. The design lays a foundation for the high accuracy calibration of imaging spectrometer.展开更多
文摘Near-nadir observations by the Multispectral Instrument (MSI) onboard the Sentinel-2 and the Operational Land Imager (OLI) onboard Landsat 8 were collected during two Simultaneous Nadir Overpasses (SNO). Multispectral images with 10, 20, and 30 m resolution from a spatially uniform area in the Saharan desert were acquired for direct comparison of MSI and OLI Top- Of-Atmosphere (TOA) reflectances. This paper presents an initial radiometric cross-calibration of the 8 corresponding spectral bands of the Sentinel-2 MSI and Landsat 8 OLI sensors. With the well-calibrated Landsat 8 OLI as a reference, the comparison indicates that 6 MSI bands are consistent with OLI within 3% in terms of spectral band adjustment factors Bi . The Near-Infra-Red (NIR) and cirrus bands are exceptions. They yield radiometric differences on the order of 8% and 15% respectively. Cross-calibration results show that the radiometric difference of the 7 corresponding bands are consistent to OLI within 1% or better, except on cirrus band. A pixel-by-pixel match between the MSI and OLI observations for different land covers showed that. This initial study suggests that the red-edge band B8A of MSI can be used to replace the NIR band B08 when conducting vegetation monitoring.
基金Project supported by the National Natural Science Foundation of China(Grant No.41474161)the National High-Technology Program of China(Grant No.2015AA123703)
文摘In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.
文摘The Visible and Infrared Multispectral Imager (VIMI) is one of the main payloads of the GF-5 satellite. It has 12 spectral bands covering the wavelength from visible light to thermal infrared. The imager designed life is 8 years. In order to monitor and correct the radiometric performance of the imager for a long time and meet the user’s demand for the quantitative remote sensing application, the expandable diffuser used for calibration in full FOV and full optical path method is designed. The solar diffuser is installed on the front side of the optical system and does not affect the normal imaging of VIMI. When VIMI need calibration, the diffuser is expand to the front of optical system via the driving mechanism. According to the characteristics of the GF-5 satellite orbit, the requirement of the calibration energy and the installation matrix of the imager relative to the satellite, the expansion angle of the diffuser is 39 degrees. The 430 mm × 430 mm large-size PTEE diffuser is manufactured to ensure full FOV and full optical path calibration. The diffuser’s directional hemispherical reflectance is higher than 95% from 420 nm to 2400 nm and variation of BRDF in the direction of imager observation is better than 2.5%. The diffuser stability monitoring radiometer is designed to monitor the on-orbit attenuation performance of the diffuser. Results of ground simulation experiments and preliminary on-board calibration experiments were introduced.
文摘The first research and experimental results obtained in China of high-accuracy radiometric calibration based on cryogenic radiometer are reported. Uncertainties of cryogenic radiometer and trap detectors at 7 wavelengths in the visible spectrum (488-786 nm) were less than 0.023% and 0.035% respectively, which proved the reasonability and possibility of establishing and transferring high-accuracy radiometric standards based on detectors.
基金supported by the International Science and Technology Cooperation Program of China (Grant No 2008DFA21540)the Chinese Defence Advance Research Program of Science and Technology (Grant No 07K00100KJ) the National Hi-Tech Research and Development Pro-gram of China ("863" Project)
文摘The calibration experiment data at Dunhuang radiometric calibration site in October, 2008 were used to achieve the on-orbit radiometric calibration for HJ-1A hyper spectral imager (HSI). Two other field experiments data were used to validate the Dunhuang calibration results. One field experiment took place in Inner-Mongolia, China in September, 2008, and the other field experiment took place in Lake Frome, Australia in February, 2009. Finally, the ‘confidence interval of calibration error’ concept was put forward for quantitatively computing the calibration coefficient error confidence interval. The results showed that the Dunhuang calibration results in 2008 had high reliability. The confidence intervals of calibration error for all HSI channels were between 2% to 12%, which could satisfy the requirement of the HSI quantitative applications.
文摘For the problem of in-flight test site radiometric calibration for the FY-1D Meteorological Satellite onboard sensor's visible and near infrared channels,this paper described the calibration method,satellite-ground synchronous observation data acquired at China Dunhuang Calibration Test Site,parameter derivation and radiative transfer computation during the calibration,and the calibration result analysis.At FY-1D seven channels (with central wavelength at Channels 1:630 nm,2:865 nm;6:1610 nm;7:455 nm,8:505 nm;9:555 nm;10:932 nm),calibration coefficients obtained during the ground site calibration were compared with that respectively of pre- launch calibration.It is demonstrated that results of FY-1D onboard two sensors' (A and B) at channels 1,2,6 and 10 were close to pre-calibration,and the absolute difference of Gobi desert reflectance computed using test site and pre-launch calibration coefficients was no more than 2%. At other channels,large pre-launch calibration errors resulted in a poor consistency between the test site and pre-launch calibration.The errors can be corrected by the test site calibration results. Based on a rough estimation,the overall error of the calibration was about 6%. The paper also presented the in-flight vicarious calibration at the visible and near infrared channels of FY-1C sensor A which was launched in 1999 and has been put into operational mode since 2002.The results exhibit that FY-1C sensor's response has 23% attenuation at Channels 7 and 8,while only minor degradation at the other channels was found. During the mission,calibrations were also conducted at NOAA-17's Channels 1 and 2 (1:430 -830 nm,2:500--1072 nm).A very good consistency has been achieved between the test site and pre-launched calibration results.
基金supported by the National Natural Science Foundation of China(Grant No.11174017)the National High Technology Research and Development Program of China("863" Program)(Grant No.2008AA121806)
文摘The radiometric calibration of remote sensors is a basis and prerequisite of information quantification in remote sensing. This paper proposes a method for outdoor relative radiometric calibration using gray scale targets. In this method, the idea of two substitutions is adopted. Sunlight is used to replace the integrating sphere light source, and gray scale targets are used to re-place the diffuser. In this way, images at different radiance levels obtained outdoors can calculate the relative radiometric cali-bration coefficients using the least square method. The characteristics of this method are as follows. Firstly, compared with la-boratory calibration, it greatly reduces the complexity of the calibration method and the test cost. Secondly, compared with the existing outdoor relative radiometric calibration of a single radiance level, it uses test images of different radiance levels to re-duce errors. Thirdly, it is easy to operate with fewer environmental requirements, has obvious advantages in the rapid calibra-tion of airborne remote sensors before or after flight and is practical in engineering. This paper theoretically and experimental-ly proves the feasibility of this method. Calibration experiments were conducted on the wide-view multispectral imager (WVMI) using this method, and the precision of this method was evaluated by analyzing the corrected images of large uniform targets on ground. The experiment results have demonstrated that the new method is effective and its precision meets the re-quirement of the absolute radiometric calibration.
基金Supported by the National Key Research and Development Program of China(2018YFB0504900)National Natural Science Foundation of China(41675036)
文摘The instrument cross-calibration is an effective way to assess the quality of satellite data. In this study, a new method is proposed to cross-calibrate the sensors among satellite instruments by using a RObotic Lunar Observatory(ROLO) model and Apollo sample reflectance in reflective solar bands(RSBs). The ROLO model acts as a transfer radiometer to bridge between the instruments. The reflective spectrum of the Apollo sample is used to compensate for the difference in the instrument's relative spectral responses(RSRs). In addition, the double ratio between the observed lunar irradiance and the simulated lunar irradiance is used to reduce the difference in instrument lunar viewing and illumining geometry. This approach is applied to the Moderate Resolution Imaging Spectroradiometer(MODIS), the Sea-Viewing Wide Field-of-View Sensor(Sea Wi FS), and the Advanced Land Imager(ALI) on board three satellites, respectively. The mean difference between MODIS and Sea Wi FS is less than 3.14%, and the difference between MODIS and ALI is less than 4.75%. These results indicate that the proposed cross-calibration method not only compensates for the RSR mismatches but also reduces the differences in lunar observation geometry. Thus,radiance calibration of any satellite instrument can be validated with a reference instrument bridged by the moon.
基金This work is supported in part by China Scholarship Council,by NASA,USA(NNX10AT74G,NNX08AP55G)by National Natural Science Foundation of China(No.41021061).
文摘In the field of biomass estimation,terrain radiometric calibration of airborne polarimetric SAR data for forested areas is an urgent problem.Illuminated area correction ofσ-naught could not completely remove terrain features.Inspired by Small and Shimada,this paper tested gamma-naught on one mountainous forested area using airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar data and found it could remove most terrain features.However,a systematic increasing trend from far range to near range is found in airborne SAR cases.This paper made an attempt to use the relationship between distance to SAR sensor andγ-naught to calibrateγ-naught.Two quantitative evaluation methods are proposed.Experimental results demonstrate that variation ofγ-naught can be constrained to a limited extent from near range to far range.Since this method is based on ground range images,it avoids complicated orthorectification.
基金supported by the National Natural Science Foundation of China(No.41474161)the National High Technology Research and Development Program of China(No.2015AA123703)
文摘Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of source, an on-orbit radiometric calibration method is designed in this paper. This chain is based on the spectral inversion accuracy of the calibration light source. We compile the genetic algorithm progress which is used to optimize the channel design of the transfer radiometer and consider the degradation of the halogen lamp, thus realizing the high accuracy inversion of spectral curve in the whole working time. The experimental results show the average root mean squared error is 0.396%, the maximum root mean squared error is 0.448%, and the relative errors at all wavelengths are within 1% in the spectral range from 500 nm to 900 nm during 100 h operating time. The design lays a foundation for the high accuracy calibration of imaging spectrometer.