In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p...In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.展开更多
A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio tele...A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio telescope(TMRT),this system has been meticulously designed to ensure long-term reliability and high performance.It incorporates high-performance hydrogen atomic clocks,high-precision time standards,automatic signal switching,and robust system software.This comprehensive approach has enabled the system to achieve long-term reliable operation,successfully supporting both major national engineering tasks and daily scientific observations.The effectiveness of the system is evidenced by its consistent delivery of the precision and stability required for radio astronomy.This article provides an in-depth exploration of the design and operation of the time and frequency system at the Tianma 65 m telescope,examining various aspects of its architecture,implementation,and performance.By sharing these insights,we aim to contribute knowledge that could benefit similar systems at other VLBI stations,greatly advancing radio astronomy infrastructure.展开更多
Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Dopple...Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.展开更多
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque...Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.展开更多
Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency t...Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
Accurate frequency estimation in a wideband digital receiver using the FFT algorithm encounters challenges, such as spectral leakage resulting from the FFT’s assumption of signal periodicity. High-resolution FFTs pos...Accurate frequency estimation in a wideband digital receiver using the FFT algorithm encounters challenges, such as spectral leakage resulting from the FFT’s assumption of signal periodicity. High-resolution FFTs pose computational demands, and estimating non-integer multiples of frequency resolution proves exceptionally challenging. This paper introduces two novel methods for enhanced frequency precision: polynomial interpolation and array indexing, comparing their results with super-resolution and scalloping loss. Simulation results demonstrate the effectiveness of the proposed methods in contemporary radar systems, with array indexing providing the best frequency estimation despite utilizing maximum hardware resources. The paper demonstrates a trade-off between accurate frequency estimation and hardware resources when comparing polynomial interpolation and array indexing.展开更多
In this paper, we make a statistical analysis of the fault information of the underground fluid instruments of 12 models in China from January 2021 to May 2022 based on the Pearson correlation coefficient, and compare...In this paper, we make a statistical analysis of the fault information of the underground fluid instruments of 12 models in China from January 2021 to May 2022 based on the Pearson correlation coefficient, and compare the fault statistics of the meteorological three-element instruments of 3 models during the study period. The results show that:(1) The numbers of faults of the underground fluid instruments of 12models with different service times are basically positively correlated with the numbers of the corresponding instruments, with good consistency. Moreover, the automatic observation instruments(8models) with more than 30 units are significantly correlated at a 0.05 significance level(95% confidence level). Even at a 0.01 significance level(99% confidence level), there are 7 models(7/8) with significant correlation.(2) The positive and negative correlations between the monthly average number of faults and the corresponding service times of the underground fluid instruments of 12 models with different service times are random, and there are 9 models(75%) with no significant correlation at a 0.05 significance level(95% confidence level), while 12 models(100%) with no significant correlation at a 0.01significance level(99% confidence level).(3) The monthly average numbers of faults of the underground fluid instruments of 12 models are basically 0.02-0.05 times/(unit·month), and the overall fault frequency is low.(4) The fault statistics results of the meteorological three-element instruments of 3 models are consistent with the characteristics of the underground fluid instruments of 12 models. In general,there is no significant correlation between the fault frequency and the service time of underground fluid instruments.(5) The results of this paper demonstrate that the service time of underground fluid instruments cannot be taken as the main reason for whether to update the instruments. Similarly, the fault frequency of the instruments cannot be taken as the main reason for the service life of the instruments in the process of formulating the service life standards of underground fluid instruments.展开更多
This study proposes a wavelets approach to estimating time–frequency-varying betas in the capital asset pricing model(CAPM)framework.The dynamic of systematic risk across time and frequency is analyzed to investigate...This study proposes a wavelets approach to estimating time–frequency-varying betas in the capital asset pricing model(CAPM)framework.The dynamic of systematic risk across time and frequency is analyzed to investigate stock risk-profile robustness.Furthermore,we emphasize the effect of an investor’s investment horizon on the robustness of portfolio characteristics.We use a daily panel of French stocks from 2012 to 2022.Results show that varying systematic risk varies in time and frequency,and that its short and long-run evolutions differ.We observe differences in short and long dynamics,indicating that a stock’s betas differently fluctuate to early announcements or signs of events.However,short-run and long-run betas exhibit similar dynamics during persistent shocks.Betas are more volatile during times of crisis,resulting in greater or lesser robustness of risk profiles.Significant differences exist in short-run and longrun risk profiles,implying a different asset allocation.We conclude that the standard CAPM assumes short-run investment.Then,investors should consider time–frequency CAPM to perform systematic risk analysis and portfolio allocation.展开更多
Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal mo...Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.展开更多
Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional...Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.展开更多
This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the co...This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the common equation the natural frequencies of an n th order network are correlated with the n port parameters. The equation is simple and dual in form and clear in its physical meaning. The procedure of finding the solution is simplified and standardized, and it will not cause the loss of roots. The common equation would find wide use and be systematized.展开更多
A complete method of synchronization technology of bistatic radar using global position system (GPS) is presented. The pulse per second signal (1PPS) is elaborately modified to increase the time synchronization pr...A complete method of synchronization technology of bistatic radar using global position system (GPS) is presented. The pulse per second signal (1PPS) is elaborately modified to increase the time synchronization precision and keep loop locking. A very high time synchronization precision is achieved. Using the modified 1PPS to discipline the local OCXO, the reference frequency signal achieves both high long term stability (LTS) and short term stability (STS) properties. An algorithm, named phase abrupt change CFAR is presented to restrain the 1PPS phase abrupt change and keep loop locking. The experimental results indicate that this time and frequency synchronization method is effective and the time synchronization precision of the synchronization system can be improved from ±100 ns to ±25 ns. In addition, the phase noise is improved to 20 dB.展开更多
Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear ...Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.展开更多
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re...This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.展开更多
The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful ...The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful tool to extract helpful information of the machinery fault signal. Various fractional lower order(FLO) time-frequency distribution methods have been proposed based on fractional lower order statistics, which include fractional lower order short time Fourier transform(FLO-STFT), fractional lower order Wigner-Ville distributions(FLO-WVDs), fractional lower order Cohen class time-frequency distributions(FLO-CDs), fractional lower order adaptive kernel time-frequency distributions(FLO-AKDs) and adaptive fractional lower order time-frequency auto-regressive moving average(FLO-TFARMA) model time-frequency representation method.The methods and the exiting methods based on second order statistics in SaS distribution environments are compared, simulation results show that the new methods have better performances than the existing methods. The advantages and disadvantages of the improved time-frequency methods have been summarized.Last, the new methods are applied to analyze the outer race fault signals, the results illustrate their good performances.展开更多
Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion met...Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion method in the time and frequency domain based on Bayesian inversion theory to improve the resolution of the estimated P- and S-wave velocities and density. We initially construct the objective function using Bayesian inference by combining seismic data in the time and frequency domain. We use Cauchy and Gaussian probability distribution density functions to obtain the prior information for the model parameters and the likelihood function, respectively. We estimate the elastic parameters by solving the initial objective function with added model constraints to improve the inversion robustness. The results of the synthetic data suggest that the frequency spectra of the estimated parameters are wider than those obtained with conventional elastic inversion in the time domain. In addition, the proposed inversion approach offers stronger antinoising compared to the inversion approach in the frequency domain. Furthermore, results from synthetic examples with added Gaussian noise demonstrate the robustness of the proposed approach. From the real data, we infer that more model parameter details can be reproduced with the proposed joint elastic inversion.展开更多
On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displace...On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displacement responses with ice breaking modes, ice acting directions and platform structures are analyzed and determined. The results lead to an important conclusion obtained for the first time that ice breaking frequency and the natural frequency of the first mode of the platform are the two main factors that dominate the degree of vibration. The present work provides a firm basis for both design and operation of fixed platforms against ice loading.展开更多
This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resis...This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resist frame (MRF), and validates the approach with shaking table tests. The time frequency feature (TFF) of the relative displacement at measured story is defined as the real part of the coefficients of the analytical wavelet transform. The fractal dimension (FD) is to quantify the TFF within the fundamental frequency band using box counting method. It is verified that the FDTFFs at all stories of the linear MRF are identical with the help of static condensation method and modal superposition principle, while the FDTFFs at the stories with localized nonlinearities due to damage will be different from those at the stories without nonlinearities using the reverse-path methodology. By comparing the FDTFFs of displacements at measured stories in a structure, the damage-induced nonlinearity of the structure under strong ground motion can be detected and localized. Finally shaking table experiments on a 1:8 scale sixteen-story three-bay steel MRF with added frictional dampers, which generate local nonlinearities, are conducted to validate the approach.展开更多
基金supported by Shandong Provincial Natural Science Foundation(ZR2020MF015)Aerospace Technology Group Stability Support Project(ZY0110020009).
文摘In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.
基金supported by the National Natural Sci-ence Foundation of China(12273098).
文摘A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio telescope(TMRT),this system has been meticulously designed to ensure long-term reliability and high performance.It incorporates high-performance hydrogen atomic clocks,high-precision time standards,automatic signal switching,and robust system software.This comprehensive approach has enabled the system to achieve long-term reliable operation,successfully supporting both major national engineering tasks and daily scientific observations.The effectiveness of the system is evidenced by its consistent delivery of the precision and stability required for radio astronomy.This article provides an in-depth exploration of the design and operation of the time and frequency system at the Tianma 65 m telescope,examining various aspects of its architecture,implementation,and performance.By sharing these insights,we aim to contribute knowledge that could benefit similar systems at other VLBI stations,greatly advancing radio astronomy infrastructure.
文摘Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.
基金the support of the National Natural Science Foundation of China(52077061)Fundamental Research Funds for the Central Universities(B240201121).
文摘Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.
基金support of the National Natural Sci-ence Foundation of China(NSFC)(62305373)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA1502040404,XDB2101040004).
文摘Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
文摘Accurate frequency estimation in a wideband digital receiver using the FFT algorithm encounters challenges, such as spectral leakage resulting from the FFT’s assumption of signal periodicity. High-resolution FFTs pose computational demands, and estimating non-integer multiples of frequency resolution proves exceptionally challenging. This paper introduces two novel methods for enhanced frequency precision: polynomial interpolation and array indexing, comparing their results with super-resolution and scalloping loss. Simulation results demonstrate the effectiveness of the proposed methods in contemporary radar systems, with array indexing providing the best frequency estimation despite utilizing maximum hardware resources. The paper demonstrates a trade-off between accurate frequency estimation and hardware resources when comparing polynomial interpolation and array indexing.
基金supported by the Science Project for Earthquake Resilience of China Earthquake Administration(XH22020YA).
文摘In this paper, we make a statistical analysis of the fault information of the underground fluid instruments of 12 models in China from January 2021 to May 2022 based on the Pearson correlation coefficient, and compare the fault statistics of the meteorological three-element instruments of 3 models during the study period. The results show that:(1) The numbers of faults of the underground fluid instruments of 12models with different service times are basically positively correlated with the numbers of the corresponding instruments, with good consistency. Moreover, the automatic observation instruments(8models) with more than 30 units are significantly correlated at a 0.05 significance level(95% confidence level). Even at a 0.01 significance level(99% confidence level), there are 7 models(7/8) with significant correlation.(2) The positive and negative correlations between the monthly average number of faults and the corresponding service times of the underground fluid instruments of 12 models with different service times are random, and there are 9 models(75%) with no significant correlation at a 0.05 significance level(95% confidence level), while 12 models(100%) with no significant correlation at a 0.01significance level(99% confidence level).(3) The monthly average numbers of faults of the underground fluid instruments of 12 models are basically 0.02-0.05 times/(unit·month), and the overall fault frequency is low.(4) The fault statistics results of the meteorological three-element instruments of 3 models are consistent with the characteristics of the underground fluid instruments of 12 models. In general,there is no significant correlation between the fault frequency and the service time of underground fluid instruments.(5) The results of this paper demonstrate that the service time of underground fluid instruments cannot be taken as the main reason for whether to update the instruments. Similarly, the fault frequency of the instruments cannot be taken as the main reason for the service life of the instruments in the process of formulating the service life standards of underground fluid instruments.
文摘This study proposes a wavelets approach to estimating time–frequency-varying betas in the capital asset pricing model(CAPM)framework.The dynamic of systematic risk across time and frequency is analyzed to investigate stock risk-profile robustness.Furthermore,we emphasize the effect of an investor’s investment horizon on the robustness of portfolio characteristics.We use a daily panel of French stocks from 2012 to 2022.Results show that varying systematic risk varies in time and frequency,and that its short and long-run evolutions differ.We observe differences in short and long dynamics,indicating that a stock’s betas differently fluctuate to early announcements or signs of events.However,short-run and long-run betas exhibit similar dynamics during persistent shocks.Betas are more volatile during times of crisis,resulting in greater or lesser robustness of risk profiles.Significant differences exist in short-run and longrun risk profiles,implying a different asset allocation.We conclude that the standard CAPM assumes short-run investment.Then,investors should consider time–frequency CAPM to perform systematic risk analysis and portfolio allocation.
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900502the National Science Foundation of China under Grant 62001179the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111。
文摘Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.
基金Aeronautical Science Foundation of China (20071551016)
文摘Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.
文摘This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the common equation the natural frequencies of an n th order network are correlated with the n port parameters. The equation is simple and dual in form and clear in its physical meaning. The procedure of finding the solution is simplified and standardized, and it will not cause the loss of roots. The common equation would find wide use and be systematized.
基金the National Ministry Innovation Foundation (7130302)
文摘A complete method of synchronization technology of bistatic radar using global position system (GPS) is presented. The pulse per second signal (1PPS) is elaborately modified to increase the time synchronization precision and keep loop locking. A very high time synchronization precision is achieved. Using the modified 1PPS to discipline the local OCXO, the reference frequency signal achieves both high long term stability (LTS) and short term stability (STS) properties. An algorithm, named phase abrupt change CFAR is presented to restrain the 1PPS phase abrupt change and keep loop locking. The experimental results indicate that this time and frequency synchronization method is effective and the time synchronization precision of the synchronization system can be improved from ±100 ns to ±25 ns. In addition, the phase noise is improved to 20 dB.
基金supported by the National Natural Science Foundation of China(No.10632040)
文摘Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.
基金supported in part by the National Natural Science Foundation of China(61673161)the Natural Science Foundation of Jiangsu Province of China(BK20161510)+2 种基金the Fundamental Research Funds for the Central Universities of China(2017B13914)the 111 Project(B14022)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.
基金supported by the National Natural Science Foundation of China(61261046,61362038)the Natural Science Foundation of Jiangxi Province(20142BAB207006,20151BAB207013)+2 种基金the Science and Technology Project of Provincial Education Department of Jiangxi Province(GJJ14738,GJJ14739)the Research Foundation of Health Department of Jiangxi Province(20175561)the Science and Technology Project of Jiujiang University(2016KJ001,2016KJ002)
文摘The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful tool to extract helpful information of the machinery fault signal. Various fractional lower order(FLO) time-frequency distribution methods have been proposed based on fractional lower order statistics, which include fractional lower order short time Fourier transform(FLO-STFT), fractional lower order Wigner-Ville distributions(FLO-WVDs), fractional lower order Cohen class time-frequency distributions(FLO-CDs), fractional lower order adaptive kernel time-frequency distributions(FLO-AKDs) and adaptive fractional lower order time-frequency auto-regressive moving average(FLO-TFARMA) model time-frequency representation method.The methods and the exiting methods based on second order statistics in SaS distribution environments are compared, simulation results show that the new methods have better performances than the existing methods. The advantages and disadvantages of the improved time-frequency methods have been summarized.Last, the new methods are applied to analyze the outer race fault signals, the results illustrate their good performances.
基金supported by the National Nature Science Foundation Project(Nos.41604101 and U1562215)the National Grand Project for Science and Technology(No.2016ZX05024-004)+2 种基金the Natural Science Foundation of Shandong(No.BS2014NJ005)Science Foundation from SINOPEC Key Laboratory of Geophysics(No.33550006-15-FW2099-0027)the Fundamental Research Funds for the Central Universities
文摘Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion method in the time and frequency domain based on Bayesian inversion theory to improve the resolution of the estimated P- and S-wave velocities and density. We initially construct the objective function using Bayesian inference by combining seismic data in the time and frequency domain. We use Cauchy and Gaussian probability distribution density functions to obtain the prior information for the model parameters and the likelihood function, respectively. We estimate the elastic parameters by solving the initial objective function with added model constraints to improve the inversion robustness. The results of the synthetic data suggest that the frequency spectra of the estimated parameters are wider than those obtained with conventional elastic inversion in the time domain. In addition, the proposed inversion approach offers stronger antinoising compared to the inversion approach in the frequency domain. Furthermore, results from synthetic examples with added Gaussian noise demonstrate the robustness of the proposed approach. From the real data, we infer that more model parameter details can be reproduced with the proposed joint elastic inversion.
基金The project was financially supported by China Postdoctor Science Foundationthe Key Project Foundation of the Chinese Academy of Sciences and China National Offshore Oil Corporation
文摘On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displacement responses with ice breaking modes, ice acting directions and platform structures are analyzed and determined. The results lead to an important conclusion obtained for the first time that ice breaking frequency and the natural frequency of the first mode of the platform are the two main factors that dominate the degree of vibration. The present work provides a firm basis for both design and operation of fixed platforms against ice loading.
基金National Natural Science Foundation under Grant No.51161120359Ministry of Education under Grant No.20112302110050Special Fund for Earthquake Scientific Research in the Public Interest under Grant No.201308003
文摘This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resist frame (MRF), and validates the approach with shaking table tests. The time frequency feature (TFF) of the relative displacement at measured story is defined as the real part of the coefficients of the analytical wavelet transform. The fractal dimension (FD) is to quantify the TFF within the fundamental frequency band using box counting method. It is verified that the FDTFFs at all stories of the linear MRF are identical with the help of static condensation method and modal superposition principle, while the FDTFFs at the stories with localized nonlinearities due to damage will be different from those at the stories without nonlinearities using the reverse-path methodology. By comparing the FDTFFs of displacements at measured stories in a structure, the damage-induced nonlinearity of the structure under strong ground motion can be detected and localized. Finally shaking table experiments on a 1:8 scale sixteen-story three-bay steel MRF with added frictional dampers, which generate local nonlinearities, are conducted to validate the approach.