We created CRISPR-Cas9 knock-out and overexpressing OsbZIP72 transgenic rice plants to gain a better understanding of the role and molecular mechanism of OsbZIP72 gene in stress tolerance,which has remained largely el...We created CRISPR-Cas9 knock-out and overexpressing OsbZIP72 transgenic rice plants to gain a better understanding of the role and molecular mechanism of OsbZIP72 gene in stress tolerance,which has remained largely elusive.OsbZIP72 was expressed and integrated into rice transgenic plant genomes,and the OsbZIP72 transcript in overexpression lines was elicited by salinity,abscisic acid(ABA)and drought stresses.OsbZIP72 overexpressing plants showed higher tolerance to drought and salinity stresses,while knock-out transgenic lines showed higher sensitivity to these stresses.The differentially expressed genes(DEGs)from RNA-sequencing data encompassed several abiotic stress genes,and the functional classification of these DEGs demonstrated the robust transcriptome diversity in OsbZIP72.Yeast one-hybrid,along with luciferase assay,indicated that OsbZIP72 acted as a transcriptional initiator.Remarkably,electrophoresis mobility assay revealed that OsbZIP72 bound directly to the ABAresponsive element in the OsHKT1;1 promoter region and activated its transcription.Overall,our findings revealed that OsbZIP72 can act as a transcriptional modulator with the ability to induce the expression of OsHKT1;1 in response to environmental stress through an ABA-dependent regulatory pathway,indicating that OsbZIP72 can play a crucial role in the ABA-mediated salt and drought tolerance pathway in rice.展开更多
Potassium(K) is an essential macronutrient for plant growth and development and influences yield and quality of agricultural crops.Maize(Zea mays) is one of the most widely distributed crops worldwide.In China,althoug...Potassium(K) is an essential macronutrient for plant growth and development and influences yield and quality of agricultural crops.Maize(Zea mays) is one of the most widely distributed crops worldwide.In China,although maize consumes a large amount of K fertilizer,the K uptake/utilization efficiency(KUE)of maize cultivars is relatively low.Elucidation of KUE mechanisms and development of maize cultivars with higher KUE are needed.Maize KUE is determined by K+uptake,transport,and remobilization,which depend on a variety of K+channels and transporters.We review basic information about K+channels and transporters in maize,their functions and regulation,and the roles of K+in nitrogen transport,sugar transport,and salt tolerance.We discuss challenges and prospects for maize KUE improvement.展开更多
Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chlorid...Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chloride regulation in the pain pathway and by effecting neuronal excitability and pain sensitization. The present study aimed to investigate the analgesic effect of the speciifc sodium-potassium-chloride co-transporter 1 inhibitor bumetanide, and the change in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain. Results showed that intrathecal bumetanide could decrease cumulative pain scores, and could increase thermal and mechanical pain thresholds in a rat model of incisional pain. Sodium-potassium-chloride co-transporter 1 expression in-creased in neurons from dorsal root ganglion and the deep laminae of the ipsilateral dorsal horn following incision. By contrast, potassium-chloride co-transporter 2 expression decreased in neurons of the deep laminae from the ipsilateral dorsal horn. These ifndings suggest that spinal sodium-potassium-chloride co-transporter 1 expression was up-regulated and spinal potassi-um-chloride co-transporter 2 expression was down-regulated following incision. Intrathecal bumetanide has analgesic effects on incisional pain through inhibition of sodium-potassi-um-chloride co-transporter 1.展开更多
Soil salinity has a major impact on rice seed germination,severely limiting rice production.Herein,a rice germination defective mutant under salt stress(gdss)was identified by using chemical mutagenesis.The GDSS gene ...Soil salinity has a major impact on rice seed germination,severely limiting rice production.Herein,a rice germination defective mutant under salt stress(gdss)was identified by using chemical mutagenesis.The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9.Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress.OsHAK9 is highly expressed in germinating seed embryos.Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K^(+)efflux in salt-exposed germinating seeds for the balance of K^(+)/Na^(+).Disruption of OsHAK9 significantly reduced gibberellin 4(GA4)levels,and the germination defective phenotype of oshak9a was partly rescued by exogenous GA_(3)treatment under salt stress.RNA sequencing(RNA-seq)and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress,and the expression of OsGA2ox7 was significantly inhibited by salt stress.Null mutants of OsGA2ox7 created using clustered,regularly interspaced,short palindromic repeat(CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress.Overall,our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7,which provides a novel clue about the relationship between GA and OsHAKs in rice.展开更多
To verify the feasibility of high-affinity nitrate transporter gene (Nrt2) as an indicator of nitrogen status, changes in the transcript levels of transcripts associated with phosphate starvation and different nitra...To verify the feasibility of high-affinity nitrate transporter gene (Nrt2) as an indicator of nitrogen status, changes in the transcript levels of transcripts associated with phosphate starvation and different nitrate concentrations were studied using real-time quantitative reverse-transcription PCR (QRT-PCR) technology in batch cultures of Skeletonema costatum. The results show that compared with P-replete condition, P starvation could reduce the Nrt2 transcript levels apparently. Nrt2 transcript levels had a significant negative linear correlation with nitrate concentrations below 40 pmol/L. The results of 48 h short-term incubation experiment under different nitrate concentrations confirmed this correlation, and the following regression equation is built: y = -3.305x + 98.95, R2 = 0.988, where x represents nitrate concentrations (〈40 btmol/L) and y represents the Nrt2 transcript levels.展开更多
Adventitious root formation is a bottleneck during vegetative proliferation.Potassium(K^(+))is an essential macronutrient for plants.K^(+)accumulation from the soil and its distribution to the different plant organs i...Adventitious root formation is a bottleneck during vegetative proliferation.Potassium(K^(+))is an essential macronutrient for plants.K^(+)accumulation from the soil and its distribution to the different plant organs is mediated by K^(+)transporters named K^(+)transporter(KT),K^(+)uptake(KUP),or high-affinity K^(+)(HAK).This study aimed to identify members of the HAK gene family in apples and to characterize the effects of K^(+)supply on adventitious root formation and on the expression of HAK genes and the genes that putatively control auxin transport,signaling,and cell fate during adventitious root formation.In this study,34 HAK genes(MdHAKs)were identified in the apple(Malus×domestica‘Golden Delicious’)genome.A phylogenetic analysis divided MdHAKs into four clusters(Ⅰ,Ⅱ,Ⅲ,andⅣ),comprising 16,1,4,and 13 genes,respectively.The syntenic relationships revealed that 62.5%of the total MdHAK genes arise from genomic duplication events.Chromosome location,domain structure,motif analysis,and physico-chemical characteristics were subsequently investigated.Furthermore,the application of K^(+)indicated the emergence of adventitious roots at 8 d and produced more adventitious roots at 16 d than the K^(+)-free control(CK)treatment.In addition,various MdHAKs showed root-specific expression in B9 apple rootstock stem cuttings and enhanced expression during the initiation and emergence stages of adventitious root formation in response to K^(+)treatment.Additionally,K^(+)treatment enhanced the expression levels of MdPIN1,MdPIN2,and MdAUX1.Further data indicated that a higher expression of MdWOX11,MdLBD16,and MdLBD29 and of cell cycle-related genes contributed to the auxin-stimulated adventitious root formation in response to K^(+).展开更多
With abundant potassium resources and high capacity,potassium metal batteries(PMBs)present a compelling option for the next generation of energy storage technology.However,PMBs suffer from an unstable anode interface ...With abundant potassium resources and high capacity,potassium metal batteries(PMBs)present a compelling option for the next generation of energy storage technology.However,PMBs suffer from an unstable anode interface caused by uncontrolled dendrite growth,which results in unsatisfactory cyclability and safety concerns.Extensive investigations suggest that significant progress has been made in enhancing the interfacial stability of PMBs.The various effective strategies for stabilizing interfaces can ultimately be attributed to the regulation of the sluggish ion transfer kinetics and irregular deposition,i.e.,the arrangement of ion transport behaviors at the interface.Rational modulation of ions transport rate and ions deposition directions makes it possible to obtain a dendrite-free and smooth deposition plane.Herein,the influencing factors and action mechanism of K^(+)interface transport behaviors are discussed to understand the nature of material design for constructing stable anode interfaces,including regulating the solvation and desolvation structures,accelerating K^(+)transport kinetics and controlling K^(+)deposition direction.In addition,the deficiencies and prospects of the research on electrolyte,separators and designed electrode involved in the manufacturing and testing and ion transport process of PMBs are discussed.This review is expected to provide some possible directions for constructing dendrite-free interfaces in advanced PMBs-related research and offer significant insights for prospective experimental research and commercial applications.展开更多
Malignant melanoma, characterized by invasive local growth and early formation of metastases, is the most aggressive type of skin cancer. Melanoma inhibitory activity (MIA), secreted by malignant melanoma cells, int...Malignant melanoma, characterized by invasive local growth and early formation of metastases, is the most aggressive type of skin cancer. Melanoma inhibitory activity (MIA), secreted by malignant melanoma cells, interacts with the cell adhesion receptors, integrins a4131 and 05131, facilitating cell detachment and promoting formation of me- tastases. In the present study, we demonstrate that MIA secretion is confined to the rear end of migrating cells, while in non-migrating cells MIA accumulates in the actin cortex. MIA protein takes a conventional secretory pathway including coat protein complex I (COPI)- and coat protein complex II (COPII)-dependent protein transport to the cell periphery, where its final release depends on intracellular Ca2+ ions. Interestingly, the Ca2+-activated K+-channel, subfamily N, member 4 (KCa3.1), known to be active at the rear end of migrating cells, was found to support MIA secretion. Secretion was diminished by the specific KCa3.1 channel inhibitor TRAM-34 and by expression of dominant- negative mutants of the channel. In summary, we have elucidated the migration-associated transport of MIA protein to the cell rear and also disclosed a new mechanism by which KCa3.1 potassium channels promote cell migration.展开更多
Potassium(K),an important nutrient element,can improve the stress resistance/tolerance of crops.The application of K in resisting plant-parasitic nematodes shows that the K treatment can reduce the occurrence of nemat...Potassium(K),an important nutrient element,can improve the stress resistance/tolerance of crops.The application of K in resisting plant-parasitic nematodes shows that the K treatment can reduce the occurrence of nematode diseases and increase crop yield.However,data on K_(2)SO_(4)induced rice resistance against the root-knot nematode Meloidogyne graminicola are still lacking.In this work,K_(2)SO_(4)treatment reduced galls and nematodes in rice plants and delayed the development of nematodes.Rather than affecting the attractiveness of roots to nematodes and the morphological phenotype of giant cells at feeding sites,such an effect is achieved by rapidly priming hydrogen peroxide(H_(2)O_(2))accumulation and increasing callose deposition.Meanwhile,galls and nematodes in rice roots were more in the potassium channel OsAKT11 and transporter OsHAK5 gene-deficient plants than in wild-type,while the K_(2)SO_(4)-induced resistance showed weaker in the defective plants.In addition,during the process of nematode infection,the expression of jasmonic acid(JA)/ethylene(ET)/brassinolide(BR)signaling pathway-related genes and pathogenesis-related(PR)genes OsPR1 a/OsPR1 b was up-regulated in rice after K_(2)SO_(4)treatment.In conclusion,K_(2)SO_(4)induced rice resistance against M.graminicola.The mechanism of inducing resistance was to prime the basal defense and required the participation of the K^(+)channel and transporter in rice.These laid a foundation for further study on the mechanism of rice defense against nematodes and the rational use of potassium fertilizer on improving rice resistance against nematodes in the field.展开更多
In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. He...In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKTI;4, a member of the HKT gene family from Sorghum bicolor. Upon Na+ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na+/ K+ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na+ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K+, implicating that SbHKT1;4 may mediate K+ uptake in the presence of excessive Na+. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na+ and K+ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKTI;4 functions to maintain optimal Na+/K+ balance under Na+ stress to the breeding of salt-tolerant glycophytic crops is discussed.展开更多
Nitrogen, phosphorous and potassium are essential nutrients for plant growth and development. However, their contents in soils are limited so that crop production needs to invest a lot for fertilizer supply. To explor...Nitrogen, phosphorous and potassium are essential nutrients for plant growth and development. However, their contents in soils are limited so that crop production needs to invest a lot for fertilizer supply. To explore the genetic potentialities of crops (or plants) for their nutrient utilization efficiency has been an important research task for many years, in fact, a number of evidences have revealed that plants, during their evolution, have developed many morphological, physiological, biochemical and molecular adaptation mechanisms for acquiring nitrate, phosphate and potassium under stress conditions. Recent discoveries of many transporters and channels for nitrate, phosphate and potassium uptake have opened up opportunities to study the molecular regulatory mechanisms for acquisition of these nutrients. This review aims to briefly discuss the genes and gene families for these transporters and channels, in addition, the functions and regulation of some important transporters and channels are particularly emphasized.展开更多
The high-affinity K+ (HAK) transporter gene family is the largest family in plant that functions as potassium transporter and is important for various aspects of plant life. In the present study, we identified 27 m...The high-affinity K+ (HAK) transporter gene family is the largest family in plant that functions as potassium transporter and is important for various aspects of plant life. In the present study, we identified 27 members of this family in rice genome. The phylogenetic tree divided the land plant HAK transporter proteins into 6 distinct groups. Although the main characteristic of this family was established before the origin of seed plants, they also showed some differences between the members of non-seed and seed plants. The HAK genes in rice were found to have expanded in lineage-specific manner after the split of monocots and dicots, and both segmental duplication events and tandem duplication events contributed to the expansion of this family. Functional divergence analysis for this family provided statistical evidence for shifted evolutionary rate after gene duplication. Further analysis indicated that both point mutant with positive selection and gene conversion events contributed to the evolution of this family in rice.展开更多
基金supported by the earmarked funds for China Agriculture Research System(Grant No.CARS-01-61)National Science and Technology Support Program of China(Grant No.2015BAD01B01)+3 种基金Science and Technology Support Program of Jiangsu Province,China(Grant Nos.BE2016370-3 and BE2017323)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161299)the Financial Grant Support Program of Lianyungang City,Jiangsu Province,China(Grant Nos.QNJJ1704 and QNJJ1912)National Natural Science Foundation of China(Grant No.31701395).
文摘We created CRISPR-Cas9 knock-out and overexpressing OsbZIP72 transgenic rice plants to gain a better understanding of the role and molecular mechanism of OsbZIP72 gene in stress tolerance,which has remained largely elusive.OsbZIP72 was expressed and integrated into rice transgenic plant genomes,and the OsbZIP72 transcript in overexpression lines was elicited by salinity,abscisic acid(ABA)and drought stresses.OsbZIP72 overexpressing plants showed higher tolerance to drought and salinity stresses,while knock-out transgenic lines showed higher sensitivity to these stresses.The differentially expressed genes(DEGs)from RNA-sequencing data encompassed several abiotic stress genes,and the functional classification of these DEGs demonstrated the robust transcriptome diversity in OsbZIP72.Yeast one-hybrid,along with luciferase assay,indicated that OsbZIP72 acted as a transcriptional initiator.Remarkably,electrophoresis mobility assay revealed that OsbZIP72 bound directly to the ABAresponsive element in the OsHKT1;1 promoter region and activated its transcription.Overall,our findings revealed that OsbZIP72 can act as a transcriptional modulator with the ability to induce the expression of OsHKT1;1 in response to environmental stress through an ABA-dependent regulatory pathway,indicating that OsbZIP72 can play a crucial role in the ABA-mediated salt and drought tolerance pathway in rice.
基金supported by the National Key Research and Development Program of China (2021YFF1000500)National Natural Science Foundation of China (32025004, 32161133014, and31921001)Beijing Outstanding University Discipline Program。
文摘Potassium(K) is an essential macronutrient for plant growth and development and influences yield and quality of agricultural crops.Maize(Zea mays) is one of the most widely distributed crops worldwide.In China,although maize consumes a large amount of K fertilizer,the K uptake/utilization efficiency(KUE)of maize cultivars is relatively low.Elucidation of KUE mechanisms and development of maize cultivars with higher KUE are needed.Maize KUE is determined by K+uptake,transport,and remobilization,which depend on a variety of K+channels and transporters.We review basic information about K+channels and transporters in maize,their functions and regulation,and the roles of K+in nitrogen transport,sugar transport,and salt tolerance.We discuss challenges and prospects for maize KUE improvement.
基金supported by a grant from Guangzhou Medical University,No.2008C24
文摘Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chloride regulation in the pain pathway and by effecting neuronal excitability and pain sensitization. The present study aimed to investigate the analgesic effect of the speciifc sodium-potassium-chloride co-transporter 1 inhibitor bumetanide, and the change in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain. Results showed that intrathecal bumetanide could decrease cumulative pain scores, and could increase thermal and mechanical pain thresholds in a rat model of incisional pain. Sodium-potassium-chloride co-transporter 1 expression in-creased in neurons from dorsal root ganglion and the deep laminae of the ipsilateral dorsal horn following incision. By contrast, potassium-chloride co-transporter 2 expression decreased in neurons of the deep laminae from the ipsilateral dorsal horn. These ifndings suggest that spinal sodium-potassium-chloride co-transporter 1 expression was up-regulated and spinal potassi-um-chloride co-transporter 2 expression was down-regulated following incision. Intrathecal bumetanide has analgesic effects on incisional pain through inhibition of sodium-potassi-um-chloride co-transporter 1.
基金supported by the National Natural Science Foundation of China(Grant Nos.32272169,32000377,32172037,and 31601387)the Natural Science Foundation of Guangdong Province(Grant No.2022A1515110449)the Hainan Yazhou Bay Seed Laboratory(project of B21HJ1002)。
文摘Soil salinity has a major impact on rice seed germination,severely limiting rice production.Herein,a rice germination defective mutant under salt stress(gdss)was identified by using chemical mutagenesis.The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9.Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress.OsHAK9 is highly expressed in germinating seed embryos.Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K^(+)efflux in salt-exposed germinating seeds for the balance of K^(+)/Na^(+).Disruption of OsHAK9 significantly reduced gibberellin 4(GA4)levels,and the germination defective phenotype of oshak9a was partly rescued by exogenous GA_(3)treatment under salt stress.RNA sequencing(RNA-seq)and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress,and the expression of OsGA2ox7 was significantly inhibited by salt stress.Null mutants of OsGA2ox7 created using clustered,regularly interspaced,short palindromic repeat(CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress.Overall,our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7,which provides a novel clue about the relationship between GA and OsHAKs in rice.
基金The National Basic Research Program of China(973Program)under contract No.2010CB428706the National Natural Science Foundation of China for Creative Research Groups under contract No.41121064the National High Technology Research and Development Program of China under contract No.2008AA09Z107
文摘To verify the feasibility of high-affinity nitrate transporter gene (Nrt2) as an indicator of nitrogen status, changes in the transcript levels of transcripts associated with phosphate starvation and different nitrate concentrations were studied using real-time quantitative reverse-transcription PCR (QRT-PCR) technology in batch cultures of Skeletonema costatum. The results show that compared with P-replete condition, P starvation could reduce the Nrt2 transcript levels apparently. Nrt2 transcript levels had a significant negative linear correlation with nitrate concentrations below 40 pmol/L. The results of 48 h short-term incubation experiment under different nitrate concentrations confirmed this correlation, and the following regression equation is built: y = -3.305x + 98.95, R2 = 0.988, where x represents nitrate concentrations (〈40 btmol/L) and y represents the Nrt2 transcript levels.
基金financially supported by the National Key Research and Development Program of China(Grant No.2018YFD1000101,2019YFD1000803)Shaanxi Apple Industry Science and Technology Project(Grant No.2020zdzx03-01-04)+1 种基金Tang Scholar by Cyrus Tang Foundation(Grant No.C200022002)The China Apple Research System(Grant No.CARS-27).
文摘Adventitious root formation is a bottleneck during vegetative proliferation.Potassium(K^(+))is an essential macronutrient for plants.K^(+)accumulation from the soil and its distribution to the different plant organs is mediated by K^(+)transporters named K^(+)transporter(KT),K^(+)uptake(KUP),or high-affinity K^(+)(HAK).This study aimed to identify members of the HAK gene family in apples and to characterize the effects of K^(+)supply on adventitious root formation and on the expression of HAK genes and the genes that putatively control auxin transport,signaling,and cell fate during adventitious root formation.In this study,34 HAK genes(MdHAKs)were identified in the apple(Malus×domestica‘Golden Delicious’)genome.A phylogenetic analysis divided MdHAKs into four clusters(Ⅰ,Ⅱ,Ⅲ,andⅣ),comprising 16,1,4,and 13 genes,respectively.The syntenic relationships revealed that 62.5%of the total MdHAK genes arise from genomic duplication events.Chromosome location,domain structure,motif analysis,and physico-chemical characteristics were subsequently investigated.Furthermore,the application of K^(+)indicated the emergence of adventitious roots at 8 d and produced more adventitious roots at 16 d than the K^(+)-free control(CK)treatment.In addition,various MdHAKs showed root-specific expression in B9 apple rootstock stem cuttings and enhanced expression during the initiation and emergence stages of adventitious root formation in response to K^(+)treatment.Additionally,K^(+)treatment enhanced the expression levels of MdPIN1,MdPIN2,and MdAUX1.Further data indicated that a higher expression of MdWOX11,MdLBD16,and MdLBD29 and of cell cycle-related genes contributed to the auxin-stimulated adventitious root formation in response to K^(+).
基金financially supported by the National Natural Science Foundation of China(No.52272194)Liaoning Revitalization Talents Program(No.XLYC2007155)the Fundamental Research Funds for the Central Universities(Nos.N2025018 and N2025009)。
文摘With abundant potassium resources and high capacity,potassium metal batteries(PMBs)present a compelling option for the next generation of energy storage technology.However,PMBs suffer from an unstable anode interface caused by uncontrolled dendrite growth,which results in unsatisfactory cyclability and safety concerns.Extensive investigations suggest that significant progress has been made in enhancing the interfacial stability of PMBs.The various effective strategies for stabilizing interfaces can ultimately be attributed to the regulation of the sluggish ion transfer kinetics and irregular deposition,i.e.,the arrangement of ion transport behaviors at the interface.Rational modulation of ions transport rate and ions deposition directions makes it possible to obtain a dendrite-free and smooth deposition plane.Herein,the influencing factors and action mechanism of K^(+)interface transport behaviors are discussed to understand the nature of material design for constructing stable anode interfaces,including regulating the solvation and desolvation structures,accelerating K^(+)transport kinetics and controlling K^(+)deposition direction.In addition,the deficiencies and prospects of the research on electrolyte,separators and designed electrode involved in the manufacturing and testing and ion transport process of PMBs are discussed.This review is expected to provide some possible directions for constructing dendrite-free interfaces in advanced PMBs-related research and offer significant insights for prospective experimental research and commercial applications.
文摘Malignant melanoma, characterized by invasive local growth and early formation of metastases, is the most aggressive type of skin cancer. Melanoma inhibitory activity (MIA), secreted by malignant melanoma cells, interacts with the cell adhesion receptors, integrins a4131 and 05131, facilitating cell detachment and promoting formation of me- tastases. In the present study, we demonstrate that MIA secretion is confined to the rear end of migrating cells, while in non-migrating cells MIA accumulates in the actin cortex. MIA protein takes a conventional secretory pathway including coat protein complex I (COPI)- and coat protein complex II (COPII)-dependent protein transport to the cell periphery, where its final release depends on intracellular Ca2+ ions. Interestingly, the Ca2+-activated K+-channel, subfamily N, member 4 (KCa3.1), known to be active at the rear end of migrating cells, was found to support MIA secretion. Secretion was diminished by the specific KCa3.1 channel inhibitor TRAM-34 and by expression of dominant- negative mutants of the channel. In summary, we have elucidated the migration-associated transport of MIA protein to the cell rear and also disclosed a new mechanism by which KCa3.1 potassium channels promote cell migration.
基金supported by the Natural Science Foundation of China(32172382,31801716,and 31571986)the National Key Research and Development Program of China(2021YFC2600404)the Scientific Research Project of Hunan Provincial Department of Education of China(19B259)。
文摘Potassium(K),an important nutrient element,can improve the stress resistance/tolerance of crops.The application of K in resisting plant-parasitic nematodes shows that the K treatment can reduce the occurrence of nematode diseases and increase crop yield.However,data on K_(2)SO_(4)induced rice resistance against the root-knot nematode Meloidogyne graminicola are still lacking.In this work,K_(2)SO_(4)treatment reduced galls and nematodes in rice plants and delayed the development of nematodes.Rather than affecting the attractiveness of roots to nematodes and the morphological phenotype of giant cells at feeding sites,such an effect is achieved by rapidly priming hydrogen peroxide(H_(2)O_(2))accumulation and increasing callose deposition.Meanwhile,galls and nematodes in rice roots were more in the potassium channel OsAKT11 and transporter OsHAK5 gene-deficient plants than in wild-type,while the K_(2)SO_(4)-induced resistance showed weaker in the defective plants.In addition,during the process of nematode infection,the expression of jasmonic acid(JA)/ethylene(ET)/brassinolide(BR)signaling pathway-related genes and pathogenesis-related(PR)genes OsPR1 a/OsPR1 b was up-regulated in rice after K_(2)SO_(4)treatment.In conclusion,K_(2)SO_(4)induced rice resistance against M.graminicola.The mechanism of inducing resistance was to prime the basal defense and required the participation of the K^(+)channel and transporter in rice.These laid a foundation for further study on the mechanism of rice defense against nematodes and the rational use of potassium fertilizer on improving rice resistance against nematodes in the field.
基金supported by the "One Hundred Talents" Program of the Chinese Academy of Sciences (KSCX2‐YW‐G‐067)the National Science Foundation grant (Y4643A1001)
文摘In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKTI;4, a member of the HKT gene family from Sorghum bicolor. Upon Na+ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na+/ K+ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na+ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K+, implicating that SbHKT1;4 may mediate K+ uptake in the presence of excessive Na+. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na+ and K+ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKTI;4 functions to maintain optimal Na+/K+ balance under Na+ stress to the breeding of salt-tolerant glycophytic crops is discussed.
文摘Nitrogen, phosphorous and potassium are essential nutrients for plant growth and development. However, their contents in soils are limited so that crop production needs to invest a lot for fertilizer supply. To explore the genetic potentialities of crops (or plants) for their nutrient utilization efficiency has been an important research task for many years, in fact, a number of evidences have revealed that plants, during their evolution, have developed many morphological, physiological, biochemical and molecular adaptation mechanisms for acquiring nitrate, phosphate and potassium under stress conditions. Recent discoveries of many transporters and channels for nitrate, phosphate and potassium uptake have opened up opportunities to study the molecular regulatory mechanisms for acquisition of these nutrients. This review aims to briefly discuss the genes and gene families for these transporters and channels, in addition, the functions and regulation of some important transporters and channels are particularly emphasized.
基金supported by the National Basic Research Program of China (No. 2006CB101700)the National High- tech Research and Development Program (No. 2006AA10Z165)the Program for New Century Excellent Talents in Uni-versity of China (No. NCET2005-05- 0502).
文摘The high-affinity K+ (HAK) transporter gene family is the largest family in plant that functions as potassium transporter and is important for various aspects of plant life. In the present study, we identified 27 members of this family in rice genome. The phylogenetic tree divided the land plant HAK transporter proteins into 6 distinct groups. Although the main characteristic of this family was established before the origin of seed plants, they also showed some differences between the members of non-seed and seed plants. The HAK genes in rice were found to have expanded in lineage-specific manner after the split of monocots and dicots, and both segmental duplication events and tandem duplication events contributed to the expansion of this family. Functional divergence analysis for this family provided statistical evidence for shifted evolutionary rate after gene duplication. Further analysis indicated that both point mutant with positive selection and gene conversion events contributed to the evolution of this family in rice.