BACKGROUND Photoaging,a result of chronic sun exposure,leads to skin damage and pigmentation changes.Traditional treatments may have limitations in high-altitude areas like Yunnan Province.Intradermal Col Ⅰ injection...BACKGROUND Photoaging,a result of chronic sun exposure,leads to skin damage and pigmentation changes.Traditional treatments may have limitations in high-altitude areas like Yunnan Province.Intradermal Col Ⅰ injections stimulate collagen production,potentially improving skin quality.This study aims to assess the efficacy and safety of this treatment for photoaging.AIM To evaluate the efficacy and safety of intradermal typeΙcollagen(ColΙ)injection for treating photoaging.METHODS This prospective,self-controlled study investigated the impact of intradermal injections of ColΙon skin photodamage in 20 patients from the Yunnan Province.Total six treatment sessions were conducted every 4 wk±3 d.Before and after each treatment,facial skin characteristics were quantified using a VISIA skin detector.Skin thickness data were assessed using the ultrasound probes of the Dermalab skin detector.The Face-Q scale was used for subjective evaluation of the treatment effect by the patients.RESULTS The skin thickness of the right cheek consistently increased after each treatment session compared with baseline.The skin thickness of the left cheek significantly increased after the third through sixth treatment sessions compared with baseline.The skin thickness of the right zygomatic region increased after the second to sixth treatment sessions,whereas that of the left zygomatic region showed a significant increase after the fourth through sixth treatment sessions.The skin thickness of both temporal regions significantly increased after the fifth and sixth treatment sessions compared with baseline(P<0.05).These findings were also supported by skin ultrasound images.The feature count for the red areas and wrinkle feature count decreased following the treatment(P<0.05).VISIA assessments also revealed a decrease in the red areas after treatment.The Face-QSatisfaction with Facial Appearance Overall and Face-Q-Satisfaction with Skin scores significantly increased after each treatment session.The overall appearance of the patients improved after treatment.CONCLUSION Intradermal ColΙinjection improves photoaging,with higher patient satisfaction and fewer adverse reactions,and could be an effective treatment method for populations residing in high-altitude areas.展开更多
In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect...In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.展开更多
Objective:To evaluate the efficacy of combination perindopril/amlodipine tablets in patients with high-altitude hypertension who were previously unable to control their blood pressure with monotherapy.Methods:A total ...Objective:To evaluate the efficacy of combination perindopril/amlodipine tablets in patients with high-altitude hypertension who were previously unable to control their blood pressure with monotherapy.Methods:A total of 151 patients with high-altitude hypertension whose blood pressure remained inadequately controlled with previous monotherapy were enrolled in this study.All patients received an 8-week treatment with a combination of perindopril/amlodipine tablets,consisting of perindopril 10 mg/day and amlodipine 5 mg/day.Blood pressure measurements,including both diastolic and systolic pressures,were taken at baseline,and after 2,4,6,and 8 weeks of treatment.Results:After 8 weeks of treatment,there was a significant reduction in both average systolic and diastolic blood pressure compared to baseline(P<0.0001).Specifically,the average systolic blood pressure decreased by 24.45±13.75 mmHg,and the average diastolic blood pressure decreased by 13.37±8.40 mmHg.The overall heart rate showed no significant changes during the treatment period.Conclusion:A combination of perindopril/amlodipine tablets significantly improved blood pressure control in patients with high-altitude hypertension after 8 weeks of treatment.These results support the efficacy of combination perindopril/amlodipine as a viable treatment option for high-altitude hypertension.展开更多
BACKGROUND: Many studies have evaluated the role of vascular endothelial growth factor (VEGF) in traumatic brain edema and hemorrhagic brain edema. OBJECTIVE: To observe the effects of VEGF expression on permeabil...BACKGROUND: Many studies have evaluated the role of vascular endothelial growth factor (VEGF) in traumatic brain edema and hemorrhagic brain edema. OBJECTIVE: To observe the effects of VEGF expression on permeability of the blood-brain barrier (BBB) during high-altitude and hypoxia exposure, and to investigate the correlation between VEGF expression and BBB permeability with regard to Evans blue staining and brain edema during high-altitude exposure. DESIGN, TIME AND SETTING: The randomized, controlled, animal study was performed at the Tanggula Etape, Central Laboratory of Chengdu Medical College, and Central Laboratory of General Hospital of Chengdu Military Area Command of Chinese PLA, China, from July 2003 to November 2004. MATERIALS: Quantitative RT-PCR kit (Sigma, USA), VEGF ELISA kit (Biosource, USA), and Evans blue (Jingchun, China) were acquired for this study. METHODS: A total of 180 Wistar rats were equally and randomly assigned to 15 groups: low-altitude (500 m), middle-altitude (2 880 m), high-altitude (4 200 m), super-high-altitude (5 000 m), 1,3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 days of super high-altitude exposure. Wistar rats were exposed to various altitude gradients to establish a hypoxia model. MAIN OUTCOME MEASURES: Brain water content was calculated according to the wet-to-dry weight ratio. BBB permeability to Evans blue was determined by colorimetric method. VEGF mRNA and protein levels in brain tissues were detected using RT-PCR and double-antibody sandwich ELISA. RESULTS: Brain water content, BBB permeability to Evans blue, and VEGF mRNA and protein levels in brain tissues increased with increasing altitude and prolonged exposure to altitude. The greatest increase was determined on day 9 upon ascending 5 000 m. Simultaneously, VEGF expression positively correlated to BBB permeability of Evans blue and brain water content (r = 0.975, 0.917, P〈 0.01). CONCLUSION: Increased VEGF protein and mRNA expression was responsible for increased BBB permeability, which may be an important mechanism underlying brain edema during high-altitude exposure.展开更多
Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rock...Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.展开更多
In collaboration with 12 other institutions, the Meteorological Observation Center of the China Meteorological Administration undertook a comprehensive marine observation experiment in the South China Sea using the Yi...In collaboration with 12 other institutions, the Meteorological Observation Center of the China Meteorological Administration undertook a comprehensive marine observation experiment in the South China Sea using the Yilong-10 high-altitude large unmanned aerial vehicle(UAV). The Yilong-10 UAV carried a self-developed dropsonde system and a millimeter-wave cloud radar system. In addition, a solar-powered unmanned surface vessel and two drifting buoys were used. The experiment was further supported by an intelligent, reciprocating horizontal drifting radiosonde system that was deployed from the Sansha Meteorological Observing Station, with the intent of producing a stereoscopic observation over the South China Sea. Comprehensive three-dimensional observations were collected using the system from 31 July to2 August, 2020. This information was used to investigate the formation and development processes of Typhoon Sinlaku(2020). The data contain measurements of 21 oceanic and meteorological parameters acquired by the five devices, along with video footage from the UAV. The data proved very helpful in determining the actual location and intensity of Typhoon Sinlaku(2020). The experiment demonstrates the feasibility of using a high-altitude, large UAV to fill in the gaps between operational meteorological observations of marine areas and typhoons near China, and marks a milestone for the use of such data for analyzing the structure and impact of a typhoon in the South China Sea. It also demonstrates the potential for establishing operational UAV meteorological observing systems in the future, and the assimilation of such data into numerical weather prediction models.展开更多
Due to the severe restrictions of natural conditions and ecological environment,high-altitude mountainous areas usually become the " hard bones" in the battle against poverty. Xueshan Township,Luquan Yi and ...Due to the severe restrictions of natural conditions and ecological environment,high-altitude mountainous areas usually become the " hard bones" in the battle against poverty. Xueshan Township,Luquan Yi and Miao Autonomous County of Yunnan Province,located in the alpine valley of Jinsha River,is a major township with wide and deep poverty,and the incidence of poverty is up to 45. 00%. In recent years,Xueshan Township has insisted on the battle against poverty,made effort to develop the Codonopsis pilosula industry,and successfully developed a road to poverty alleviation through C. pilosula industry,and formed a unique industrial poverty alleviation model by the end of 2018,the incidence of poverty dropped to 0. 74%. Based on field survey and interview,this paper analyzes and summarizes the specific practices,main results,practical experience and promotion and application measures of the poverty alleviation model of C. pilosula planting industry in Xueshan Township,in the hope of providing certain reference for the targeted poverty alleviation in similar areas in Yunnan Province and other provinces of China.展开更多
1 Introduction The human population is projected to reach 9200million by 2050.A fundamental question for science is whether it is possible to increase food production to meet the demands of a human population of that ...1 Introduction The human population is projected to reach 9200million by 2050.A fundamental question for science is whether it is possible to increase food production to meet the demands of a human population of that magnitude.It’s possible only to increase an aquaculture production.Cultivation of fish/shrimp larvae is a bottleneck in a cultivation of the different organisms.Live food展开更多
The anti-inflammatory and antioxidant effects of exendin-4(Ex-4) have been reported previously.However,whether(Ex-4) has anti-inflammatory and antioxidant effects on high-altitude cerebral edema(HACE) remains po...The anti-inflammatory and antioxidant effects of exendin-4(Ex-4) have been reported previously.However,whether(Ex-4) has anti-inflammatory and antioxidant effects on high-altitude cerebral edema(HACE) remains poorly understood.In this study,two rat models of HACE were established by placing rats in a hypoxic environment with a simulated altitude of either 6000-or 7000-m above sea level(MASL) for 72 hours.An altitude of 7000 MASL with 72-hours of hypoxia was found to be the optimized experimental paradigm for establishing HACE models.Then,in rats where a model of HACE was established by introducing them to a 7000 MASL environment with 72-hours of hypoxia treatment,2,10 and,100 μg of Ex-4 was intraperitoneally administrated.The open field test and tail suspension test were used to test animal behavior.Routine methods were used to detect change in inflammatory cells.Hematoxylin-eosin staining was performed to determine pathological changes to brain tissue.Wet/dry weight ratios were used to measure brain water content.Evans blue leakage was used to determine blood-brain barrier integrity.Enzyme-linked immunosorbent assay(ELISA) was performed to measure markers of inflammation and oxidative stress including superoxide dismutase,glutathione,and malonaldehyde values,as well as interleukin-6,tumor necrosis factor-alpha,cyclic adenosine monophosphate levels in the brain tissue.Western blot analysis was performed to determine the levels of occludin,ZO-1,SOCS-3,vascular endothelial growth factor,EPAC1,nuclear factor-kappa B,and aquaporin-4.Our results demonstrate that Ex-4 preconditioning decreased brain water content,inhibited inflammation and oxidative stress,alleviated brain tissue injury,maintain blood-brain barrier integrity,and effectively improved motor function in rat models of HACE.These findings suggest that Ex-4 exhibits therapeutic potential in the treatment of HACE.展开更多
Ice nucleating particle(INP) measurements were made at two high-altitude stations in India. Aerosols collected on filter paper at Girawali Observatory, Inter University Center for Astronomy & Astrophysics(IGO), an...Ice nucleating particle(INP) measurements were made at two high-altitude stations in India. Aerosols collected on filter paper at Girawali Observatory, Inter University Center for Astronomy & Astrophysics(IGO), and at the Radio Astronomy Center, Ooty(RAC), were activated in deposition mode using a thermal gradient diffusion chamber to determine the INP concentrations. The measurement campaigns at IGO were conducted during 2011, 2013 and 2014, and at RAC during 2013 and 2014. When the aerosol samples were exposed to an ice supersaturation of between 5% and 23% in the temperature range-17.6?C to-22?C, the maximum INP number concentration at IGO and RAC was 1.0 L-1and 1.6 L-1, respectively.A maximum correlation coefficient of 0.76 was observed between the INP number concentration and ice supersaturation. The airmass trajectories analyzed for the measurement campaigns showed that the Arabian Desert and arid regions were the main INP contributors. Elemental analysis of particles showed the presence of Na, Cl, Si, Al, Fe, Cu, Co, Cd, S, Mn and K, as well as some rare-Earth elements like Mo, Ru, La, Ce, V and Zr. When aerosols in the size range 0.5–20 μm were considered, the fraction that acted as INPs was 1 : 104to 1 : 106at IGO, and 1 : 103to 1 : 104at RAC. The higher ratio of INPs to aerosols at RAC than IGO may be attributable to the presence of rare-Earth elements observed in the aerosol samples at RAC, which were absent at IGO.展开更多
Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into t...Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.展开更多
BACKGROUND Colon cancer is associated with a higher incidence among residents in highaltitude areas.Hypoxic environment at high altitudes inhibits the phagocytic and oxygen-dependent killing function of phagocytes,the...BACKGROUND Colon cancer is associated with a higher incidence among residents in highaltitude areas.Hypoxic environment at high altitudes inhibits the phagocytic and oxygen-dependent killing function of phagocytes,thereby increasing the inflammatory factors,inhibiting the body’s innate immunity and increasing the risk of colon cancer.AIM To examine the effect of minimally invasive surgery vs laparotomy in patients with colon cancer residing in high-altitude areas.METHODS Ninety-two patients with colon cancer in our hospital from January 2019 to February 2021 were selected and divided into the minimally invasive surgery and laparotomy groups using the random number table method,with 46 patients in each group.Minimally invasive surgery was performed in the minimally invasive group and laparotomy in the laparotomy group.Operative conditions,inflammatory index pre-and post-surgery,immune function index and complication probability were measured.RESULTS Operative duration was significantly longer and intraoperative blood loss and recovery time of gastrointestinal function were significantly less(all P<0.05)in the minimally invasive group than in the laparotomy group.The number of lymph nodes dissected was not significantly different.Before surgery,there were no significant differences in serum C-reactive protein,interleukin-6 and tumor necrosis factor-αlevels between the groups,whereas after surgery,the levels were significantly higher in the minimally invasive group(26.98±6.91 mg/L,146.38±11.23 ng/mL and 83.51±8.69 pg/mL vs 41.15±8.39 mg/L,186.79±15.36 ng/mL and 110.65±12.84 pg/mL,respectively,P<0.05).Furthermore,before surgery,there were no significant differences in CD3+,CD4+and CD4+/CD8+levels between the groups,whereas after surgery,the levels decreased in both groups,being significantly higher in the minimally invasive group(55.61%±4.39%,35.45%±3.67%and 1.30±0.35 vs 49.68%±5.33%,31.21%±3.25%and 1.13±0.30,respectively,P<0.05).Complication probability was significantly lower in the minimally invasive group(4.35%vs 17.39%,P<0.05).CONCLUSION Laparoscopic minimally invasive procedures reduce surgical trauma and alleviate the inflammatory response and immune dysfunction caused by invasive operation.It also shortens recovery time and reduces complication probability.展开更多
CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate ...CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions.展开更多
Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-s...Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.展开更多
The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic m...The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.展开更多
Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-Apr...Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.展开更多
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i...Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.展开更多
We introduced query system of the historical high-altitude surface weather chart. Historical high-altitude surface data were converted to Grads data format. Grads as generation tool of the image, ASP was used to compi...We introduced query system of the historical high-altitude surface weather chart. Historical high-altitude surface data were converted to Grads data format. Grads as generation tool of the image, ASP was used to compile WEB page. By B/S mode, only user submitted necessary conditions for the image to server by client browser, historical high-altitude surface weather chart at corresponding time and height could be ob- tained. Without any procedures and related data, only needed client browser, user could use image conveniently to a large extent.展开更多
Objective To investigate the role of sea-level cerebral blood flow(CBF)in predicting acute mountain sickness(AMS)using three-dimensional pseudo-continuous arterial spin labeling(3D-pCASL).Methods Forty-eight healthy v...Objective To investigate the role of sea-level cerebral blood flow(CBF)in predicting acute mountain sickness(AMS)using three-dimensional pseudo-continuous arterial spin labeling(3D-pCASL).Methods Forty-eight healthy volunteers reached an altitude of 3,650 m by air after undergoing a head magnetic resonance imaging(MRI)including 3D-pCASL at sea level.The CBF values of the bilateral anterior cerebral artery(ACA),middle cerebral artery(MCA),posterior cerebral artery(PCA),and posterior inferior cerebellar artery(PICA)territories and the laterality index(LI)of CBF were compared between the AMS and non-AMS groups.Statistical analyses were performed to determine the relationship between CBF and AMS,and the predictive performance was assessed using receiver operating characteristic(ROC)curves.Results The mean cortical CBF in women(81.65±2.69 mL/100 g/min)was higher than that in men(74.35±2.12 mL/100 g/min)(P<0.05).In men,the cortical CBF values in the bilateral ACA,PCA,PICA,and right MCA were higher in patients with AMS than in those without.Cortical CBF in the right PCA best predicted AMS(AUC=0.818).In women,the LI of CBF in the ACA was different between the AMS and non-AMS groups and predicted AMS with an AUC of 0.753.Conclusion Although the mechanism and prediction of AMS are quite complicated,higher cortical CBF at sea level,especially the CBF of the posterior circulatory system,may be used for prediction in male volunteers using non-invasive 3D-pCASL.展开更多
With the continuous development of domestic highway construction,highway civil engineering and service level quality have attracted much attention.Good pavement quality and high-quality service make people feel comfor...With the continuous development of domestic highway construction,highway civil engineering and service level quality have attracted much attention.Good pavement quality and high-quality service make people feel comfortable and smooth when traveling.High-quality pavement can significantly reduce the probability of traffic accidents.At present,there is a direct relationship between pavement quality and pavement construction operations.Carrying out pavement construction operations in cold high-altitude areas requires a reasonable selection of construction equipment and methods.The application of warm-mix asphalt pavement construction technology can ensure pavement quality.Therefore,this paper analyzes the advantages of warm-mix technology,the environmental characteristics of cold high-altitude areas,and construction preparations,and discusses the construction technology of warm-mix asphalt pavement in cold high-altitude areas in detail,to improve the overall road quality of cold high-altitude areas.展开更多
文摘BACKGROUND Photoaging,a result of chronic sun exposure,leads to skin damage and pigmentation changes.Traditional treatments may have limitations in high-altitude areas like Yunnan Province.Intradermal Col Ⅰ injections stimulate collagen production,potentially improving skin quality.This study aims to assess the efficacy and safety of this treatment for photoaging.AIM To evaluate the efficacy and safety of intradermal typeΙcollagen(ColΙ)injection for treating photoaging.METHODS This prospective,self-controlled study investigated the impact of intradermal injections of ColΙon skin photodamage in 20 patients from the Yunnan Province.Total six treatment sessions were conducted every 4 wk±3 d.Before and after each treatment,facial skin characteristics were quantified using a VISIA skin detector.Skin thickness data were assessed using the ultrasound probes of the Dermalab skin detector.The Face-Q scale was used for subjective evaluation of the treatment effect by the patients.RESULTS The skin thickness of the right cheek consistently increased after each treatment session compared with baseline.The skin thickness of the left cheek significantly increased after the third through sixth treatment sessions compared with baseline.The skin thickness of the right zygomatic region increased after the second to sixth treatment sessions,whereas that of the left zygomatic region showed a significant increase after the fourth through sixth treatment sessions.The skin thickness of both temporal regions significantly increased after the fifth and sixth treatment sessions compared with baseline(P<0.05).These findings were also supported by skin ultrasound images.The feature count for the red areas and wrinkle feature count decreased following the treatment(P<0.05).VISIA assessments also revealed a decrease in the red areas after treatment.The Face-QSatisfaction with Facial Appearance Overall and Face-Q-Satisfaction with Skin scores significantly increased after each treatment session.The overall appearance of the patients improved after treatment.CONCLUSION Intradermal ColΙinjection improves photoaging,with higher patient satisfaction and fewer adverse reactions,and could be an effective treatment method for populations residing in high-altitude areas.
文摘In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.
文摘Objective:To evaluate the efficacy of combination perindopril/amlodipine tablets in patients with high-altitude hypertension who were previously unable to control their blood pressure with monotherapy.Methods:A total of 151 patients with high-altitude hypertension whose blood pressure remained inadequately controlled with previous monotherapy were enrolled in this study.All patients received an 8-week treatment with a combination of perindopril/amlodipine tablets,consisting of perindopril 10 mg/day and amlodipine 5 mg/day.Blood pressure measurements,including both diastolic and systolic pressures,were taken at baseline,and after 2,4,6,and 8 weeks of treatment.Results:After 8 weeks of treatment,there was a significant reduction in both average systolic and diastolic blood pressure compared to baseline(P<0.0001).Specifically,the average systolic blood pressure decreased by 24.45±13.75 mmHg,and the average diastolic blood pressure decreased by 13.37±8.40 mmHg.The overall heart rate showed no significant changes during the treatment period.Conclusion:A combination of perindopril/amlodipine tablets significantly improved blood pressure control in patients with high-altitude hypertension after 8 weeks of treatment.These results support the efficacy of combination perindopril/amlodipine as a viable treatment option for high-altitude hypertension.
基金Supported by:the Tackle Key Problem in Science and Technology during the "11~(th) Five-Year Plan" Period of Chinese PLA,No.06G030
文摘BACKGROUND: Many studies have evaluated the role of vascular endothelial growth factor (VEGF) in traumatic brain edema and hemorrhagic brain edema. OBJECTIVE: To observe the effects of VEGF expression on permeability of the blood-brain barrier (BBB) during high-altitude and hypoxia exposure, and to investigate the correlation between VEGF expression and BBB permeability with regard to Evans blue staining and brain edema during high-altitude exposure. DESIGN, TIME AND SETTING: The randomized, controlled, animal study was performed at the Tanggula Etape, Central Laboratory of Chengdu Medical College, and Central Laboratory of General Hospital of Chengdu Military Area Command of Chinese PLA, China, from July 2003 to November 2004. MATERIALS: Quantitative RT-PCR kit (Sigma, USA), VEGF ELISA kit (Biosource, USA), and Evans blue (Jingchun, China) were acquired for this study. METHODS: A total of 180 Wistar rats were equally and randomly assigned to 15 groups: low-altitude (500 m), middle-altitude (2 880 m), high-altitude (4 200 m), super-high-altitude (5 000 m), 1,3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 days of super high-altitude exposure. Wistar rats were exposed to various altitude gradients to establish a hypoxia model. MAIN OUTCOME MEASURES: Brain water content was calculated according to the wet-to-dry weight ratio. BBB permeability to Evans blue was determined by colorimetric method. VEGF mRNA and protein levels in brain tissues were detected using RT-PCR and double-antibody sandwich ELISA. RESULTS: Brain water content, BBB permeability to Evans blue, and VEGF mRNA and protein levels in brain tissues increased with increasing altitude and prolonged exposure to altitude. The greatest increase was determined on day 9 upon ascending 5 000 m. Simultaneously, VEGF expression positively correlated to BBB permeability of Evans blue and brain water content (r = 0.975, 0.917, P〈 0.01). CONCLUSION: Increased VEGF protein and mRNA expression was responsible for increased BBB permeability, which may be an important mechanism underlying brain edema during high-altitude exposure.
基金This work was financially supported by National Natural Science Foundation of China(Grant Nos.U2244226,U2244227 and 42177172).
文摘Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.
基金supported by the Petrel Meteorological Observation Experiment Project of the China Meteorological Administration and the “Adaptive Improvement of New Observation Platform for Typhoon Observation (2018YFC1506401)” of the Ministry of Science and Technology。
文摘In collaboration with 12 other institutions, the Meteorological Observation Center of the China Meteorological Administration undertook a comprehensive marine observation experiment in the South China Sea using the Yilong-10 high-altitude large unmanned aerial vehicle(UAV). The Yilong-10 UAV carried a self-developed dropsonde system and a millimeter-wave cloud radar system. In addition, a solar-powered unmanned surface vessel and two drifting buoys were used. The experiment was further supported by an intelligent, reciprocating horizontal drifting radiosonde system that was deployed from the Sansha Meteorological Observing Station, with the intent of producing a stereoscopic observation over the South China Sea. Comprehensive three-dimensional observations were collected using the system from 31 July to2 August, 2020. This information was used to investigate the formation and development processes of Typhoon Sinlaku(2020). The data contain measurements of 21 oceanic and meteorological parameters acquired by the five devices, along with video footage from the UAV. The data proved very helpful in determining the actual location and intensity of Typhoon Sinlaku(2020). The experiment demonstrates the feasibility of using a high-altitude, large UAV to fill in the gaps between operational meteorological observations of marine areas and typhoons near China, and marks a milestone for the use of such data for analyzing the structure and impact of a typhoon in the South China Sea. It also demonstrates the potential for establishing operational UAV meteorological observing systems in the future, and the assimilation of such data into numerical weather prediction models.
基金Commissioned Project of Office of Rural Work Leading Group of Kunming Municipal Committee of the Communist Party of China "Study on the Poverty Alleviation Model of Kunming City in the Context of World Poverty Reduction"Construction Project of Party Branch Secretary’s Studio of "Double Leader" Teachers in Colleges and Universities of the Ministry of Education of China
文摘Due to the severe restrictions of natural conditions and ecological environment,high-altitude mountainous areas usually become the " hard bones" in the battle against poverty. Xueshan Township,Luquan Yi and Miao Autonomous County of Yunnan Province,located in the alpine valley of Jinsha River,is a major township with wide and deep poverty,and the incidence of poverty is up to 45. 00%. In recent years,Xueshan Township has insisted on the battle against poverty,made effort to develop the Codonopsis pilosula industry,and successfully developed a road to poverty alleviation through C. pilosula industry,and formed a unique industrial poverty alleviation model by the end of 2018,the incidence of poverty dropped to 0. 74%. Based on field survey and interview,this paper analyzes and summarizes the specific practices,main results,practical experience and promotion and application measures of the poverty alleviation model of C. pilosula planting industry in Xueshan Township,in the hope of providing certain reference for the targeted poverty alleviation in similar areas in Yunnan Province and other provinces of China.
文摘1 Introduction The human population is projected to reach 9200million by 2050.A fundamental question for science is whether it is possible to increase food production to meet the demands of a human population of that magnitude.It’s possible only to increase an aquaculture production.Cultivation of fish/shrimp larvae is a bottleneck in a cultivation of the different organisms.Live food
基金supported by the National Key Research and Development Plan of China,No.2016YFC1101500the National Natural Science Foundation of China,No.11672332,11102235,31200809,81772018+1 种基金the Key Science and Technology Support Foundation of Tianjin City of China,No.17YFZCSY00620the Natural Science Foundation of Tianjin City of China,No.15JCYBJC28600,17JCZDJC35400
文摘The anti-inflammatory and antioxidant effects of exendin-4(Ex-4) have been reported previously.However,whether(Ex-4) has anti-inflammatory and antioxidant effects on high-altitude cerebral edema(HACE) remains poorly understood.In this study,two rat models of HACE were established by placing rats in a hypoxic environment with a simulated altitude of either 6000-or 7000-m above sea level(MASL) for 72 hours.An altitude of 7000 MASL with 72-hours of hypoxia was found to be the optimized experimental paradigm for establishing HACE models.Then,in rats where a model of HACE was established by introducing them to a 7000 MASL environment with 72-hours of hypoxia treatment,2,10 and,100 μg of Ex-4 was intraperitoneally administrated.The open field test and tail suspension test were used to test animal behavior.Routine methods were used to detect change in inflammatory cells.Hematoxylin-eosin staining was performed to determine pathological changes to brain tissue.Wet/dry weight ratios were used to measure brain water content.Evans blue leakage was used to determine blood-brain barrier integrity.Enzyme-linked immunosorbent assay(ELISA) was performed to measure markers of inflammation and oxidative stress including superoxide dismutase,glutathione,and malonaldehyde values,as well as interleukin-6,tumor necrosis factor-alpha,cyclic adenosine monophosphate levels in the brain tissue.Western blot analysis was performed to determine the levels of occludin,ZO-1,SOCS-3,vascular endothelial growth factor,EPAC1,nuclear factor-kappa B,and aquaporin-4.Our results demonstrate that Ex-4 preconditioning decreased brain water content,inhibited inflammation and oxidative stress,alleviated brain tissue injury,maintain blood-brain barrier integrity,and effectively improved motor function in rat models of HACE.These findings suggest that Ex-4 exhibits therapeutic potential in the treatment of HACE.
文摘Ice nucleating particle(INP) measurements were made at two high-altitude stations in India. Aerosols collected on filter paper at Girawali Observatory, Inter University Center for Astronomy & Astrophysics(IGO), and at the Radio Astronomy Center, Ooty(RAC), were activated in deposition mode using a thermal gradient diffusion chamber to determine the INP concentrations. The measurement campaigns at IGO were conducted during 2011, 2013 and 2014, and at RAC during 2013 and 2014. When the aerosol samples were exposed to an ice supersaturation of between 5% and 23% in the temperature range-17.6?C to-22?C, the maximum INP number concentration at IGO and RAC was 1.0 L-1and 1.6 L-1, respectively.A maximum correlation coefficient of 0.76 was observed between the INP number concentration and ice supersaturation. The airmass trajectories analyzed for the measurement campaigns showed that the Arabian Desert and arid regions were the main INP contributors. Elemental analysis of particles showed the presence of Na, Cl, Si, Al, Fe, Cu, Co, Cd, S, Mn and K, as well as some rare-Earth elements like Mo, Ru, La, Ce, V and Zr. When aerosols in the size range 0.5–20 μm were considered, the fraction that acted as INPs was 1 : 104to 1 : 106at IGO, and 1 : 103to 1 : 104at RAC. The higher ratio of INPs to aerosols at RAC than IGO may be attributable to the presence of rare-Earth elements observed in the aerosol samples at RAC, which were absent at IGO.
基金funded by National Natural Science Foundation of China(Grants No.42171210,42371194)Major Project of Key Research Bases for Humanities and Social Sciences Funded by the Ministry of Education of China(Grant No.22JJD790015).
文摘Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.
基金the People’s Hospital of Tibet Autonomous Region Institutional Review Board(Approval No.METBHP-21-KJ-025).
文摘BACKGROUND Colon cancer is associated with a higher incidence among residents in highaltitude areas.Hypoxic environment at high altitudes inhibits the phagocytic and oxygen-dependent killing function of phagocytes,thereby increasing the inflammatory factors,inhibiting the body’s innate immunity and increasing the risk of colon cancer.AIM To examine the effect of minimally invasive surgery vs laparotomy in patients with colon cancer residing in high-altitude areas.METHODS Ninety-two patients with colon cancer in our hospital from January 2019 to February 2021 were selected and divided into the minimally invasive surgery and laparotomy groups using the random number table method,with 46 patients in each group.Minimally invasive surgery was performed in the minimally invasive group and laparotomy in the laparotomy group.Operative conditions,inflammatory index pre-and post-surgery,immune function index and complication probability were measured.RESULTS Operative duration was significantly longer and intraoperative blood loss and recovery time of gastrointestinal function were significantly less(all P<0.05)in the minimally invasive group than in the laparotomy group.The number of lymph nodes dissected was not significantly different.Before surgery,there were no significant differences in serum C-reactive protein,interleukin-6 and tumor necrosis factor-αlevels between the groups,whereas after surgery,the levels were significantly higher in the minimally invasive group(26.98±6.91 mg/L,146.38±11.23 ng/mL and 83.51±8.69 pg/mL vs 41.15±8.39 mg/L,186.79±15.36 ng/mL and 110.65±12.84 pg/mL,respectively,P<0.05).Furthermore,before surgery,there were no significant differences in CD3+,CD4+and CD4+/CD8+levels between the groups,whereas after surgery,the levels decreased in both groups,being significantly higher in the minimally invasive group(55.61%±4.39%,35.45%±3.67%and 1.30±0.35 vs 49.68%±5.33%,31.21%±3.25%and 1.13±0.30,respectively,P<0.05).Complication probability was significantly lower in the minimally invasive group(4.35%vs 17.39%,P<0.05).CONCLUSION Laparoscopic minimally invasive procedures reduce surgical trauma and alleviate the inflammatory response and immune dysfunction caused by invasive operation.It also shortens recovery time and reduces complication probability.
基金supported by the General Project of Top-Design of Multi-Scale Nature-Social ModelsData Support and Decision Support System for NSFC Carbon Neutrality Major Project(42341202)the Basic Scientific Research Fund of the Chinese Academy of Meteorological Sciences(2021Z014)。
文摘CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions.
基金financially supported by the National Natural Science Foundation of China(31972149)funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnologythe Dodd-Walls Centre for Photonic and Quantum Technologies。
文摘Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.
基金supported by the Fundamental and Commonwealth Geological Survey of Oil and Gas of China(Grant No.DD 20221662)the National Natural Science Foundation of China(NSFC)Program(Grant No.42302124).
文摘The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.
基金jointly funded by the State Key Program of the National Natural Science Foundation of China(No.42130605)the Major Program of the National Natural Science Foundation of China(No.72293604)+5 种基金the Youth Innovative Talents Program of Guangdong Colleges and Universities(No.2022KQNCX026)the Natural Science Foundation of Shandong(No.ZR2022MD038)the Project of Enhancing School with Innovation of Guangdong Ocean University(No.230419106)the State Key Program of the National Natural Science Foundation of China(No.42130605)the National Natural Science Foundation of China(Nos.42275001,42276019,42205014,and 42275017)the Guangdong Ocean University Ph.D.Scientific Research Program(No.R19045).
文摘Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.
基金supported by the 2nd Scientific Expedition to the Qinghai–Tibet Plateau[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant number 42275045,41975012]+3 种基金the West Light Foundation of the Chinese Academy of Sciences[grant number xbzg-zdsys-202215]the Science and Technology Research Plan of Gansu Province[grant number 20JR10RA070]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number QCH2019004]iLEAPs(integrated Land Ecosystem–Atmosphere Processes Study).
文摘Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.
文摘We introduced query system of the historical high-altitude surface weather chart. Historical high-altitude surface data were converted to Grads data format. Grads as generation tool of the image, ASP was used to compile WEB page. By B/S mode, only user submitted necessary conditions for the image to server by client browser, historical high-altitude surface weather chart at corresponding time and height could be ob- tained. Without any procedures and related data, only needed client browser, user could use image conveniently to a large extent.
基金supported by the National Natural Science Foundation of China(No.81741115)Military Creative Project(No.16CXZ014)Military Healthcare Project(No.16BJZ11)。
文摘Objective To investigate the role of sea-level cerebral blood flow(CBF)in predicting acute mountain sickness(AMS)using three-dimensional pseudo-continuous arterial spin labeling(3D-pCASL).Methods Forty-eight healthy volunteers reached an altitude of 3,650 m by air after undergoing a head magnetic resonance imaging(MRI)including 3D-pCASL at sea level.The CBF values of the bilateral anterior cerebral artery(ACA),middle cerebral artery(MCA),posterior cerebral artery(PCA),and posterior inferior cerebellar artery(PICA)territories and the laterality index(LI)of CBF were compared between the AMS and non-AMS groups.Statistical analyses were performed to determine the relationship between CBF and AMS,and the predictive performance was assessed using receiver operating characteristic(ROC)curves.Results The mean cortical CBF in women(81.65±2.69 mL/100 g/min)was higher than that in men(74.35±2.12 mL/100 g/min)(P<0.05).In men,the cortical CBF values in the bilateral ACA,PCA,PICA,and right MCA were higher in patients with AMS than in those without.Cortical CBF in the right PCA best predicted AMS(AUC=0.818).In women,the LI of CBF in the ACA was different between the AMS and non-AMS groups and predicted AMS with an AUC of 0.753.Conclusion Although the mechanism and prediction of AMS are quite complicated,higher cortical CBF at sea level,especially the CBF of the posterior circulatory system,may be used for prediction in male volunteers using non-invasive 3D-pCASL.
文摘With the continuous development of domestic highway construction,highway civil engineering and service level quality have attracted much attention.Good pavement quality and high-quality service make people feel comfortable and smooth when traveling.High-quality pavement can significantly reduce the probability of traffic accidents.At present,there is a direct relationship between pavement quality and pavement construction operations.Carrying out pavement construction operations in cold high-altitude areas requires a reasonable selection of construction equipment and methods.The application of warm-mix asphalt pavement construction technology can ensure pavement quality.Therefore,this paper analyzes the advantages of warm-mix technology,the environmental characteristics of cold high-altitude areas,and construction preparations,and discusses the construction technology of warm-mix asphalt pavement in cold high-altitude areas in detail,to improve the overall road quality of cold high-altitude areas.