期刊文献+
共找到18,243篇文章
< 1 2 250 >
每页显示 20 50 100
OFDM-UAV中继广播通信系统航迹优化方法
1
作者 李冬霞 孟燕 +1 位作者 黄庚铭 刘海涛 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期91-101,共11页
为了提高无人机中继广播通信系统的性能,针对频率选择性衰落信道,考虑基站到无人机以及无人机到用户的全通信链路,提出了基于正交频分复用(OFDM)技术的无人机中继广播通信系统航迹优化方法。首先提出了基于OFDM的无人机中继广播通信传... 为了提高无人机中继广播通信系统的性能,针对频率选择性衰落信道,考虑基站到无人机以及无人机到用户的全通信链路,提出了基于正交频分复用(OFDM)技术的无人机中继广播通信系统航迹优化方法。首先提出了基于OFDM的无人机中继广播通信传输模型,对单用户节点中断概率和系统平均中断概率进行理论分析并给出近似计算公式;然后以平均中断概率最小化和最大用户中断概率最小化为优化准则,提出无人机的航迹优化方法并分析了各因素对系统中断性能的影响;最后通过计算机仿真,证明了所提航迹优化方法正确有效。研究表明:在多径信道下,基于OFDM的无人机中继广播通信系统能有效克服频率选择性衰落,且译码转发方式下的连通性优于放大转发方式;基于平均中断概率最小化准则得到的系统中断性能优于最大用户中断概率最小化准则。 展开更多
关键词 无人机中继 广播通信 正交频分复用 航迹优化 中断概率
下载PDF
基于DPBBO算法的智慧云仓UAV盘库作业优化
2
作者 张富强 温博强 惠记庄 《北京工业大学学报》 CAS CSCD 北大核心 2024年第8期921-929,共9页
针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与... 针对智慧云仓货物信息量大、易出现账物不符等库存管理问题,迫切需要将无人机(unmanned aerial vehicle, UAV)和工业物联网(industrial Internet of things, IIoT)集成起来,为仓储精细化管理提供解决方案。首先,分析盘库作业数据采集与信息交互运行机制,以危险避障和数据采集为约束函数,考虑了UAV在加速、减速、匀速、转角等飞行条件下的能耗差异,并以能耗最低和时间最短为目标函数构造UAV盘库作业数学模型;然后,设计了差分迁移-分段变异生物地理学优化(differential migration-piecewise mutation-biogeography-based optimization, DPBBO)算法对上述模型进行优化解算;最后,进行了仿真实验验证。结果表明:DPBBO算法对解决该盘库作业问题的效果较优,可以提升库存抽检任务的时效性和库存管理的准确性。 展开更多
关键词 智慧云仓 盘库作业 无人机 差分迁移-分段变异生物地理学优化算法 射频识别技术 工业物联网
下载PDF
通信约束下UAV集群协同拦截任务分配算法
3
作者 卢晓东 王一鸣 王伟 《航空科学技术》 2024年第4期18-24,共7页
针对多无人机协同拦截多机动目标的任务分配问题,同时考虑到真实战场环境中存在的通信约束以及探测范围约束条件,本文提出了分步一致性拍卖算法(SCBAA)。首先,对真实战场环境中存在的通信约束以及探测范围约束等问题进行了描述分析,构... 针对多无人机协同拦截多机动目标的任务分配问题,同时考虑到真实战场环境中存在的通信约束以及探测范围约束条件,本文提出了分步一致性拍卖算法(SCBAA)。首先,对真实战场环境中存在的通信约束以及探测范围约束等问题进行了描述分析,构建了多无人机协同拦截任务分配模型,设计了综合效能函数以及相应约束条件。其次,为解决多无人机协同打击单一目标的不平衡任务分配以及冲突消解问题,将原任务分配过程分为主要任务分配以及次要任务分配两部分,通过多次拍卖以及冲突消解实现多无人机对单一目标的任务分配。仿真结果表明,该算法可有效解决通信约束条件下的分布式多无人机协同拦截问题,并适应动态环境中任务分配对实时性的要求。 展开更多
关键词 通信约束 分布式任务分配 拍卖算法 实时重分配算法 无人机集群 群目标协同拦截
下载PDF
基于UAV勘察与层次分析法的安阳许家沟露天矿山地质风险评价 被引量:1
4
作者 江雷 娄嘉慧 史冲 《中国矿业》 北大核心 2024年第3期177-186,共10页
矿产资源是社会经济发展的重要基础,在社会发展与生态建设统筹的背景下,矿山地质风险防治与生态环境修复成为矿业研究的焦点。矿山地质风险的分类和量化是矿山地质风险防治和修复的基础,有利于因地制宜制定治理措施。本文基于UAV勘察和... 矿产资源是社会经济发展的重要基础,在社会发展与生态建设统筹的背景下,矿山地质风险防治与生态环境修复成为矿业研究的焦点。矿山地质风险的分类和量化是矿山地质风险防治和修复的基础,有利于因地制宜制定治理措施。本文基于UAV勘察和层次分析法对安阳许家沟露天矿山群地质风险进行了评价,根据勘察结果总结出边坡崩塌、矿坑坍塌和水土流失3个主要地质风险,各风险层选取4个因素,共12个评价指标,并利用ArcGIS栅格计算模块对选取的12个评价因素进行叠加分析。研究结果显示:高度风险区、显著风险区、一般风险区和稍有风险区的面积分别为13500 m^(2)、39000 m^(2)、26750 m^(2)、45750 m^(2),分别占研究区总面积的10.8%、31.2%、21.4%、36.6%;综合矿山地质风险排序为河西胜利II区<豫隆I区<豫安III区;从豫隆I区到豫安III区,随着研究子区面积的减少,边坡崩塌风险贡献率逐渐降低,矿坑坍塌风险和水土流失风险逐渐升高。研究结果表明,边坡崩塌评分与矿山地质评分呈现双峰态势,而矿坑坍塌风险和水土流失风险呈单峰态势。本文提出危岩清除、矿渣回填、边坡修整、客土恢复林地和耕地、养护治理等治理措施,从而降低矿山地质风险,修复矿山生态。 展开更多
关键词 uav勘察 层次分析法 露天矿山 矿山地质 风险评价 生态修复
下载PDF
基于UAV成像技术的‘高原红’海棠花期物候监测研究
5
作者 范俊俊 姜文龙 +3 位作者 刘星辰 夏重立 张往祥 黄俊 《北方园艺》 CAS 北大核心 2024年第10期47-54,共8页
以‘高原红’海棠(Malus‘Prairifire’)为试材,基于UAV成像技术采集物候期内图像样本并提取色彩参数值(CIE L^(*)a^(*)b^(*)),计算不同采样点及不同物候期的色差值(△E),通过对比△E的变化情况实现海棠物候的动态监测,为实时掌握海棠... 以‘高原红’海棠(Malus‘Prairifire’)为试材,基于UAV成像技术采集物候期内图像样本并提取色彩参数值(CIE L^(*)a^(*)b^(*)),计算不同采样点及不同物候期的色差值(△E),通过对比△E的变化情况实现海棠物候的动态监测,为实时掌握海棠物候动态变化情况,适时作出调整策略提供技术参考,同时也为开展花期物候调控相关研究提供参考依据。结果表明:1)利用Photoshop提取航拍图像色彩参数,并基于物候色彩参数进行聚类分析,将其物候划分为萌芽期、展叶期、蕾期、初花期、盛花期、末花期、落叶期、结果期、休眠期,建立了‘高原红’海棠物候色彩参数库;2)计算‘高原红’海棠各物候期内色差△E_(1)及不同物候期间色差△E_(2)范围,并基于各物候期内最大色差△E_(1max)′及不同物候期间最小色差△E_(2min)′,建立了基于色差参数的物候判别方法;3)随机提取了2个日期(3月22日、4月10日)的‘高原红’海棠物候图像色彩参数,通过聚类分析判定2个日期物候图分别处于蕾期和盛花期,结果与实际相符;2个日期物候图间色差(△E_(2)′=21.8)大于蕾期至初花期最小色差(△E_(2min)=9.6),表明此时物候期跨度较大,结果与实际相符。综上,该方法可便捷高效判断海棠花期等物候期情况。 展开更多
关键词 uav成像技术 ‘高原红’海棠 花期物候 色彩参数 监测
下载PDF
UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach 被引量:1
6
作者 Jiawen Kang Junlong Chen +6 位作者 Minrui Xu Zehui Xiong Yutao Jiao Luchao Han Dusit Niyato Yongju Tong Shengli Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期430-445,共16页
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers... Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses. 展开更多
关键词 AVATAR blockchain metaverses multi-agent deep reinforcement learning transformer uavS
下载PDF
UAV倾斜摄影在革命旧址保护中的应用 被引量:1
7
作者 郭天伟 董坤烽 +2 位作者 杨敏 杨永明 李筱懿 《地理空间信息》 2024年第3期79-82,98,共5页
针对革命旧址保护工作的严峻性,以及在获取革命旧址测区数据中传统测绘方法工作效率低、难以全面获取数据和无法获得高精度三维立体数据等问题,基于UAV倾斜摄影测量技术,以红军长征旧址为研究对象,通过外业数据采集,利用SIFT算法提取匹... 针对革命旧址保护工作的严峻性,以及在获取革命旧址测区数据中传统测绘方法工作效率低、难以全面获取数据和无法获得高精度三维立体数据等问题,基于UAV倾斜摄影测量技术,以红军长征旧址为研究对象,通过外业数据采集,利用SIFT算法提取匹配影像特征点,再利用SfM-MVS算法构建三维立体场景,采集三维立体场景中的检查点数据。结果表明,三维立体场景满足大比例尺数字地形图成图规范要求;分析线元素精度可知,三维立体场景数据测量结果可达厘米级,满足革命旧址保护中对数据精度的要求;在革命旧址保护工作中还可提供多种基础数据,为今后革命旧址保护工作提供了一种高效获取高精度数据的参考方法。 展开更多
关键词 革命旧址 uav倾斜摄影测量技术 三维立体场景 精度分析
下载PDF
Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer 被引量:1
8
作者 Changfeng Feng Chunping Wang +2 位作者 Dongdong Zhang Renke Kou Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3993-4013,共21页
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman... Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection. 展开更多
关键词 uav images TRANSFORMER dense small object detection
下载PDF
Real-time Rescue Target Detection Based on UAV Imagery for Flood Emergency Response 被引量:1
9
作者 ZHAO Bofei SUI Haigang +2 位作者 ZHU Yihao LIU Chang WANG Wentao 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期74-89,共16页
Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig... Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue. 展开更多
关键词 uav flood extraction target rescue detection real time
下载PDF
Cooperative UAV search strategy based on DMPC-AACO algorithm in restricted communication scenarios 被引量:1
10
作者 Shiyuan Chai Zhen Yang +3 位作者 Jichuan Huang Xiaoyang Li Yiyang Zhao Deyun Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期295-311,共17页
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr... Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios. 展开更多
关键词 Unmanned aerial vehicles(uav) Cooperative search Restricted communication Mission planning DMPC-AACO
下载PDF
Cooperative Anti-Jamming and Interference Mitigation for UAV Networks: A Local Altruistic Game Approach 被引量:1
11
作者 Yueyue Su Nan Qi +2 位作者 Zanqi Huang Rugui Yao Luliang Jia 《China Communications》 SCIE CSCD 2024年第2期183-196,共14页
To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference a... To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms. 展开更多
关键词 channel selection cooperative antijamming and interference mitigation local altruistic game Stackelberg game unmanned aerial vehicle(uav)
下载PDF
RIS辅助的UAV与用户协同缓存策略
12
作者 朱景发 苏颖 张静 《上海师范大学学报(自然科学版中英文)》 2024年第3期322-329,共8页
研究了智能反射面(RIS)和缓存辅助的无人机(UAV)中继通信系统方案,通过在UAV与用户之间搭建RIS反射信号,改善信道环境;在UAV与用户设备上部署缓存设备,预先存储热点内容,减轻无线回程链路的压力;以最大化用户服务成功概率为优化目标,建... 研究了智能反射面(RIS)和缓存辅助的无人机(UAV)中继通信系统方案,通过在UAV与用户之间搭建RIS反射信号,改善信道环境;在UAV与用户设备上部署缓存设备,预先存储热点内容,减轻无线回程链路的压力;以最大化用户服务成功概率为优化目标,建立缓存容量受限约束下的UAV与用户协同缓存放置策略优化模型,针对该非线性连续非凸约束优化问题,提出基于鲸鱼优化算法(WOA)的求解方法.仿真实验结果表明,使用RIS可以有效降低UAV通信中断概率,基于WOA的UAV与用户协同缓存最优放置策略优于现有其他两种缓存策略,能有效提高缓存命中概率,从而提高用户服务成功概率. 展开更多
关键词 无人机(uav)通信 协同缓存 智能反射面(RIS) 鲸鱼优化算法(WOA) 服务成功概率
下载PDF
对抗条件下基于SAC-Lagrangian的UAV智能规划
13
作者 岳龙飞 杨任农 +4 位作者 闫孟达 赵小茹 左家亮 刘会亮 张明元 《电光与控制》 CSCD 北大核心 2024年第8期1-7,共7页
无人机因其低成本、可消耗、分布部署、敏捷灵活的优势,在多个民用领域大放异彩。但受其智能化程度限制,如何在复杂对抗条件下自主安全完成任务仍存在巨大挑战。针对目前无人机任务规划存在的智能性和安全性问题,提出一种基于安全强化... 无人机因其低成本、可消耗、分布部署、敏捷灵活的优势,在多个民用领域大放异彩。但受其智能化程度限制,如何在复杂对抗条件下自主安全完成任务仍存在巨大挑战。针对目前无人机任务规划存在的智能性和安全性问题,提出一种基于安全强化学习算法的无人机智能规划方法(SAC-Lagrangian)。考虑了雷达威胁、禁飞区安全约束和地导对抗条件,将任务规划问题建模为约束马尔可夫决策过程(CMDP),通过拉格朗日乘子法变为对偶问题,采用最大熵柔性行动者-评论家(SAC)算法近似求解最优策略,保证了智能体在遵守安全约束条件下最大化期望回报。仿真结果表明,与其他基线算法相比,所提方法能在保证任务性能的同时确保安全性,适应动态变化的场景,任务完成率达到96%,因此,具有高效、鲁棒和安全的优势。 展开更多
关键词 无人机 安全强化学习 SAC-Lagrangian 智能任务规划 鲁棒性
下载PDF
IRS Assisted UAV Communications against Proactive Eavesdropping in Mobile Edge Computing Networks 被引量:1
14
作者 Ying Zhang Weiming Niu Leibing Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期885-902,共18页
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ... In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes. 展开更多
关键词 Mobile edge computing(MEC) unmanned aerial vehicle(uav) intelligent reflecting surface(IRS) zero forcing(ZF)
下载PDF
基于YOLOv5s-AntiUAV的反无人机目标检测算法研究 被引量:3
15
作者 谭亮 赵良军 +1 位作者 郑莉萍 肖波 《电光与控制》 CSCD 北大核心 2024年第5期40-45,107,共7页
随着无人机的应用领域不断拓展,无人机的“黑飞”给公共安全造成严重损害。为解决侵入式无人机小目标在复杂飞行环境下的错检和漏检问题,提出基于YOLOv5s-AntiUAV的反无人机目标检测算法。首先,引入结合深度超参数卷积的Slim-Neck范式,... 随着无人机的应用领域不断拓展,无人机的“黑飞”给公共安全造成严重损害。为解决侵入式无人机小目标在复杂飞行环境下的错检和漏检问题,提出基于YOLOv5s-AntiUAV的反无人机目标检测算法。首先,引入结合深度超参数卷积的Slim-Neck范式,增强算法特征提取能力并保持计算效率。其次,在骨干和颈部网络引入SPD-Conv模块,提高在低分辨率图像中小目标的检测性能。最后,用Alpha-CIoU替换YOLOv5s算法中的CIoU,增强算法泛用性。YOLOv5s-AntiUAV算法与YOLOv5s、SSD和Faster R-CNN算法在数据集Anti-UAV上的对比实验结果表明,改进算法的mAP@0.5值分别增长了1.1、12.1和4.9个百分点,凸显其实用性。由在VisDrone2019数据集上进行的迁移实验显示,相较于YOLOv5s算法,改进算法mAP@0.5值提升了4.5个百分点,表明其相较于原算法具有更强的鲁棒性。 展开更多
关键词 反无人机算法 小目标检测 YOLOv5s 复杂背景 Alpha-CIoU
下载PDF
Detection and analysis of landslide geomorphology based on UAV vertical photogrammetry
16
作者 BI Rui GAN Shu +7 位作者 YUAN Xiping LI Kun LI Raobo LUO Weidong CHEN Cheng GAO Sha HU Lin ZHU Zhifu 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1190-1214,共25页
High-resolution landslide images are required for detailed geomorphological analysis in complex topographic environment with steep and vertical landslide distribution.This study proposed a vertical route planning meth... High-resolution landslide images are required for detailed geomorphological analysis in complex topographic environment with steep and vertical landslide distribution.This study proposed a vertical route planning method for unmanned aerial vehicles(UAVs),which could achieve rapid image collection based on strictly calculated route parameters.The effectiveness of this method was verified using a DJI Mavic 2 Pro,obtaining high-resolution landslide images within the Dongchuan debris flow gully,in the Xiaojiang River Basin,Dongchuan District,Yunnan,China.A three-dimensional(3D)model was constructed by the structure-from-motion and multi-view stereo(SfM-MVS).Micro-geomorphic features were analyzed through visual interpretation,geographic information system(GIS),spatial analysis,and mathematical statistics methods.The results demonstrated that the proposed method could obtain comprehensive vertical information on landslides while improving measurement accuracy.The 3D model was constructed using the vertically oriented flight route to achieve centimeter-level accuracy(horizontal accuracy better than 6 cm,elevation accuracy better than 3 cm,and relative accuracy better than 3.5 cm).The UAV technology could further help understand the micro internal spatial and structural characteristics of landslides,facilitating intuitive acquisition of surface details.The slope of landslide clusters ranged from 36°to 72°,with the majority of the slope facing east and southeast.Upper elevation levels were relatively consistent while middle to lower elevation levels gradually decreased from left to right with significant variations in lower elevation levels.During the rainy season,surface runoff was abundant,and steep topography exacerbated changes in surface features.This route method is suitable for unmanned aerial vehicle(UAV)landslide surveys in complex mountainous environments.The geomorphological analysis methods used will provide references for identifying and describing topographic features. 展开更多
关键词 uav LANDSLIDE Vertical route SfM-MVS Topographic features
下载PDF
Elliptical encirclement control capable of reinforcing performances for UAVs around a dynamic target
17
作者 Fei Zhang Xingling Shao +1 位作者 Yi Xia Wendong Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期104-119,共16页
Most researches associated with target encircling control are focused on moving along a circular orbit under an ideal environment free from external disturbances.However,elliptical encirclement with a time-varying obs... Most researches associated with target encircling control are focused on moving along a circular orbit under an ideal environment free from external disturbances.However,elliptical encirclement with a time-varying observation radius,may permit a more flexible and high-efficacy enclosing solution,whilst the non-orthogonal property between axial and tangential speed components,non-ignorable environmental perturbations,and strict assignment requirements empower elliptical encircling control to be more challenging,and the relevant investigations are still open.Following this line,an appointed-time elliptical encircling control rule capable of reinforcing circumnavigation performances is developed to enable Unmanned Aerial Vehicles(UAVs)to move along a specified elliptical path within a predetermined reaching time.The remarkable merits of the designed strategy are that the relative distance controlling error can be guaranteed to evolve within specified regions with a designer-specified convergence behavior.Meanwhile,wind perturbations can be online counteracted based on an unknown system dynamics estimator(USDE)with only one regulating parameter and high computational efficiency.Lyapunov tool demonstrates that all involved error variables are ultimately limited,and simulations are implemented to confirm the usability of the suggested control algorithm. 展开更多
关键词 Elliptical encirclement Reinforced performances Wind perturbations uavS
下载PDF
Multi-UAV cooperative maneuver decision-making for pursuitevasion using improved MADRL
18
作者 Delin Luo Zihao Fan +1 位作者 Ziyi Yang Yang Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期187-197,共11页
Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net... Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability. 展开更多
关键词 Reinforcement learning uav Maneuver decision GRU Cooperative control
下载PDF
Vulnerability assessment of UAV engine to laser based on improved shotline method
19
作者 Le Liu Chengyang Xu +3 位作者 Changbin Zheng Sheng Cai Chunrui Wang Jin Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期588-600,共13页
Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a v... Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a variety of analysis programs for battlefield targets to traditional weapons have been developed,but a comprehensive assessment methodology for targets'vulnerability to laser is still missing.Based on the shotline method,this paper proposes a method that equates laser beam to shotline array,an efficient vulnerability analysis program of target to laser is established by this method,and the program includes the circuit board and the wire into the vulnerability analysis category,which improves the precision of the vulnerability analysis.Taking the UAV engine part as the target of vulnerability analysis,combine with the"life-death unit method"to calculate the laser penetration rate of various materials of the UAV,and the influence of laser weapon system parameters and striking orientation on the killing probability is quantified after introducing the penetration rate into the vulnerability analysis program.The quantitative analysis method proposed in this paper has certain general expansibility,which can provide a fresh idea for the vulnerability analysis of other targets to laser. 展开更多
关键词 Laser weapon Laser damage VULNERABILITY uav ENGINE Killing probability
下载PDF
Task Offloading and Trajectory Optimization in UAV Networks:A Deep Reinforcement Learning Method Based on SAC and A-Star
20
作者 Jianhua Liu Peng Xie +1 位作者 Jiajia Liu Xiaoguang Tu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1243-1273,共31页
In mobile edge computing,unmanned aerial vehicles(UAVs)equipped with computing servers have emerged as a promising solution due to their exceptional attributes of high mobility,flexibility,rapid deployment,and terrain... In mobile edge computing,unmanned aerial vehicles(UAVs)equipped with computing servers have emerged as a promising solution due to their exceptional attributes of high mobility,flexibility,rapid deployment,and terrain agnosticism.These attributes enable UAVs to reach designated areas,thereby addressing temporary computing swiftly in scenarios where ground-based servers are overloaded or unavailable.However,the inherent broadcast nature of line-of-sight transmission methods employed by UAVs renders them vulnerable to eavesdropping attacks.Meanwhile,there are often obstacles that affect flight safety in real UAV operation areas,and collisions between UAVs may also occur.To solve these problems,we propose an innovative A*SAC deep reinforcement learning algorithm,which seamlessly integrates the benefits of Soft Actor-Critic(SAC)and A*(A-Star)algorithms.This algorithm jointly optimizes the hovering position and task offloading proportion of the UAV through a task offloading function.Furthermore,our algorithm incorporates a path-planning function that identifies the most energy-efficient route for the UAV to reach its optimal hovering point.This approach not only reduces the flight energy consumption of the UAV but also lowers overall energy consumption,thereby optimizing system-level energy efficiency.Extensive simulation results demonstrate that,compared to other algorithms,our approach achieves superior system benefits.Specifically,it exhibits an average improvement of 13.18%in terms of different computing task sizes,25.61%higher on average in terms of the power of electromagnetic wave interference intrusion into UAVs emitted by different auxiliary UAVs,and 35.78%higher on average in terms of the maximum computing frequency of different auxiliary UAVs.As for path planning,the simulation results indicate that our algorithm is capable of determining the optimal collision-avoidance path for each auxiliary UAV,enabling them to safely reach their designated endpoints in diverse obstacle-ridden environments. 展开更多
关键词 Mobile edge computing SAC communication security A-Star uav
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部