A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci- plinary coupled numerical c...A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci- plinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter bound- ary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quanti- tative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flex- ible wings.展开更多
In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings wit...In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.展开更多
A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration ...A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.展开更多
The stall flutter characters of high-aspect-ratio composite wing are investigated, and the effects of structure geometric nonlinearity and stiffness couple created by composite anisotropy on them also are discussed. F...The stall flutter characters of high-aspect-ratio composite wing are investigated, and the effects of structure geometric nonlinearity and stiffness couple created by composite anisotropy on them also are discussed. Firstly, the high-aspect-ratio wing is modeled as a composite thin-walled closed section Euler beam whose displacement and rotation both could be of finite value, and the nonlinear dynamic equations is build up on it with all the effects of geometric nonlinearity, aerodynamic nonlinearity and anisotropy of material being considered. Then vibration equations are deduced through perturbing the dynamic equations at wing's equilibrium position, and coupled with unsteady stall aerodynamic model and ONERA model, to obtain the nonlinear stall flutter analysis equations of wing. Finally, the flutter stabilities with various wind speeds are determined by the harmonic balance method. With several exampies, the validity of the stall flutter model is proved, and the significant effects of geometric nonlinearity on the stall flutter various characters as wall as the effects of ply angle on the stall flutter speed and frequency also are discussed.展开更多
The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wing...The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wings.The sensitivity information of wing spanwise stiffness distribution with respect to the twist angle at wing tip,the vertical displacement at wing tip,and the flutter speed are obtained using a sensitivity method for both models.Then the relationship between stiffness distribution and aeroelastic performance is summarized to guide the design procedure.By using the genetic/sensitivity-based hybrid algorithm,an optimal solution satisfying the strength,aeroelastic and manufacturing constraints is obtained.It is found that the summarized guidance is well consistent with the optimal solution,thus providing a valuable design advice with efficiency.The study also shows that the aeroelastic-optimization-based global stiffness design procedure can obtain the optimal solution under multiple constraints with high efficiency and precision,thereby having a strong application value in engineering.展开更多
Morphology as well as kinematics is a critical determinant of performance in flapping flight.To understand the effects of the structural traits on aerodynamics of bioflyers,three rectangular wings with aspect ratios...Morphology as well as kinematics is a critical determinant of performance in flapping flight.To understand the effects of the structural traits on aerodynamics of bioflyers,three rectangular wings with aspect ratios(AR)of1,2,and 4 performing hovering-like sinusoidal kinematics at wingtip based Reynolds number of 5 300 are experimentally investigated.Flow structures on sectional cuts along the wing span are compared.Stronger K-H instability is found on the leading edge vortex of wings with higher aspect ratios.Vortex bursting only appears on the outer spanwise locations of high-aspect-ratio wings.The vortex bursting on high-aspect-ratio wings is perhaps one of the reasons why bio-flyers normally have low-aspect-ratio wings.Quantitative analysis exhibits larger dimensionless circulation of the leading edge vortex(LEV)over higher aspect ratio wings except when vortex bursting happens.The average dimensionless circulation of AR1 and AR2 along the span almost equals the dimensionless circulation at the 50%span.The flow structure and the circulation analysis show that the sinusoidal kinematics suppresses breakdown of the LEV compared with simplified flapping kinematics used in similar studies.The Reynolds number effect results on AR4 show that in the current Re range,the overall flow structure is not sensitive to Reynolds number.展开更多
A simple cantilever beam vibration test method made of biomorph and insect wing, were used to measure the vibrational stiffness and the air damping of insect wings. Vibration tests were performed in vacuum pressures t...A simple cantilever beam vibration test method made of biomorph and insect wing, were used to measure the vibrational stiffness and the air damping of insect wings. Vibration tests were performed in vacuum pressures to atmosphere and the wing stiffness and air damping factor were measured. The test method was found to be a viable method for measuring wing stiffness, natural frequencies and mode shapes. The vibrational deformation of the insect wings was found to be combination of bending and torsion because of unsymmetrical geometry of wing. The measured stiffness (K) of damselfly wings varied from 0.18 to 0.31 N/m and the air damping ratio ranged from 0.72 to 0.79. The undamped natural frequency (f<sub>n</sub>) at 13 kPa varied from 249 to 299 Hz and at atmosphere it varied from 168 to 198 Hz.展开更多
In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone ...In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.展开更多
Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present ...Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.展开更多
The potential for harvesting energy from a flexible delta wing using a piezoelectric bimorph is experimentally investigated.Different configurations of the proposed harvesting system were tested in a wind tunnel over ...The potential for harvesting energy from a flexible delta wing using a piezoelectric bimorph is experimentally investigated.Different configurations of the proposed harvesting system were tested in a wind tunnel over a broad range of airspeeds.In addition to evaluating the level of harvested power,an analysis is performed to extract critical aspects for the relation between speed,flexibility,geometry and the potential power that can be harvested from a clamped,cantilevered flexible delta wing at low angles of attack and low speeds.This analysis provides an insight into parameters that impact energy harvesting from flexible membranes or elements.展开更多
This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system bas...This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system based on Hall effect sensors is designed and applied,which is capable of assigning different up-and down-stroke speeds for the RoboFalcon platform to achieve an adjustable downstroke ratio.The aerodynamic and power characteristics of the morphing-coupled flapping pattern and the conventional flapping pattern with varying downstroke ratios are measured through a wind tunnel experiment,and the corresponding aerodynamic models are developed and analyzed by the nonlinear least squares method.The relatively low power consumption of the slow-downstroke mode of this vehicle is verified through outdoor flight tests.The results of wind tunnel experiments and flight tests indicate that increased downstroke duration can improve aerodynamic and power performance for the RoboFalcon platform.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11302011,11172025)the National Natural Science Foundation for Youth of China(No.11402013)
文摘A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci- plinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter bound- ary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quanti- tative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flex- ible wings.
文摘In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.
文摘A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.
文摘The stall flutter characters of high-aspect-ratio composite wing are investigated, and the effects of structure geometric nonlinearity and stiffness couple created by composite anisotropy on them also are discussed. Firstly, the high-aspect-ratio wing is modeled as a composite thin-walled closed section Euler beam whose displacement and rotation both could be of finite value, and the nonlinear dynamic equations is build up on it with all the effects of geometric nonlinearity, aerodynamic nonlinearity and anisotropy of material being considered. Then vibration equations are deduced through perturbing the dynamic equations at wing's equilibrium position, and coupled with unsteady stall aerodynamic model and ONERA model, to obtain the nonlinear stall flutter analysis equations of wing. Finally, the flutter stabilities with various wind speeds are determined by the harmonic balance method. With several exampies, the validity of the stall flutter model is proved, and the significant effects of geometric nonlinearity on the stall flutter various characters as wall as the effects of ply angle on the stall flutter speed and frequency also are discussed.
基金supported by the National Natural Science Foundation of China (Nos.11302011,11372023, 11172025)
文摘The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wings.The sensitivity information of wing spanwise stiffness distribution with respect to the twist angle at wing tip,the vertical displacement at wing tip,and the flutter speed are obtained using a sensitivity method for both models.Then the relationship between stiffness distribution and aeroelastic performance is summarized to guide the design procedure.By using the genetic/sensitivity-based hybrid algorithm,an optimal solution satisfying the strength,aeroelastic and manufacturing constraints is obtained.It is found that the summarized guidance is well consistent with the optimal solution,thus providing a valuable design advice with efficiency.The study also shows that the aeroelastic-optimization-based global stiffness design procedure can obtain the optimal solution under multiple constraints with high efficiency and precision,thereby having a strong application value in engineering.
基金supported by the Innovation Technology Commission(ITC)of the Government of the Hong Kong Special Administrative Region(HKSAR)with Project(ITS/115/13FP)Hong Kong Ph.D.Fellowship Scheme from the Research Grants Council(RGC)
文摘Morphology as well as kinematics is a critical determinant of performance in flapping flight.To understand the effects of the structural traits on aerodynamics of bioflyers,three rectangular wings with aspect ratios(AR)of1,2,and 4 performing hovering-like sinusoidal kinematics at wingtip based Reynolds number of 5 300 are experimentally investigated.Flow structures on sectional cuts along the wing span are compared.Stronger K-H instability is found on the leading edge vortex of wings with higher aspect ratios.Vortex bursting only appears on the outer spanwise locations of high-aspect-ratio wings.The vortex bursting on high-aspect-ratio wings is perhaps one of the reasons why bio-flyers normally have low-aspect-ratio wings.Quantitative analysis exhibits larger dimensionless circulation of the leading edge vortex(LEV)over higher aspect ratio wings except when vortex bursting happens.The average dimensionless circulation of AR1 and AR2 along the span almost equals the dimensionless circulation at the 50%span.The flow structure and the circulation analysis show that the sinusoidal kinematics suppresses breakdown of the LEV compared with simplified flapping kinematics used in similar studies.The Reynolds number effect results on AR4 show that in the current Re range,the overall flow structure is not sensitive to Reynolds number.
文摘A simple cantilever beam vibration test method made of biomorph and insect wing, were used to measure the vibrational stiffness and the air damping of insect wings. Vibration tests were performed in vacuum pressures to atmosphere and the wing stiffness and air damping factor were measured. The test method was found to be a viable method for measuring wing stiffness, natural frequencies and mode shapes. The vibrational deformation of the insect wings was found to be combination of bending and torsion because of unsymmetrical geometry of wing. The measured stiffness (K) of damselfly wings varied from 0.18 to 0.31 N/m and the air damping ratio ranged from 0.72 to 0.79. The undamped natural frequency (f<sub>n</sub>) at 13 kPa varied from 249 to 299 Hz and at atmosphere it varied from 168 to 198 Hz.
基金supported by the Korea Science and Engineering Foundation Grant(National Research Laboratory Program,R0A-2007-000-200012-0)the Korea Research Foundation(KRF-006-005-J03301)partially supported by the 2009 KU Brain Pool of Konkuk University
文摘In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education, Science and Technology (Grant number: 2009-0083068)
文摘Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.
基金support of the Center for Energy Harvesting Materials and Systemsthe National Science Foundation of United States under Grant 1035042
文摘The potential for harvesting energy from a flexible delta wing using a piezoelectric bimorph is experimentally investigated.Different configurations of the proposed harvesting system were tested in a wind tunnel over a broad range of airspeeds.In addition to evaluating the level of harvested power,an analysis is performed to extract critical aspects for the relation between speed,flexibility,geometry and the potential power that can be harvested from a clamped,cantilevered flexible delta wing at low angles of attack and low speeds.This analysis provides an insight into parameters that impact energy harvesting from flexible membranes or elements.
基金supported by National Natural Science Foundation of China under Grants No.52175277 and 12272318,and ND Basic Research Funds under Grants G2022WDwas supported in part by the Basic Research Program of Shenzhen under GrantJCYJ20190806142816524.
文摘This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system based on Hall effect sensors is designed and applied,which is capable of assigning different up-and down-stroke speeds for the RoboFalcon platform to achieve an adjustable downstroke ratio.The aerodynamic and power characteristics of the morphing-coupled flapping pattern and the conventional flapping pattern with varying downstroke ratios are measured through a wind tunnel experiment,and the corresponding aerodynamic models are developed and analyzed by the nonlinear least squares method.The relatively low power consumption of the slow-downstroke mode of this vehicle is verified through outdoor flight tests.The results of wind tunnel experiments and flight tests indicate that increased downstroke duration can improve aerodynamic and power performance for the RoboFalcon platform.