To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries fa...In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.展开更多
The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil...The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil tends to affect the agricultural coffee production system. Therefore, research related to geoelectrical properties of soil such as resistivity for characterization the region of the study for coffee cultivation purposes can improve and optimize the production. This resistivity method allows to investigate the subsurface through different techniques: 1D vertical electrical sounding and electrical imaging. The acquisition of data using these techniques permitted the creation of 2D resistivity cross section from the study area. The geoelectrical data was acquired by using a resistivity meter equipment and was processed in different softwares. The results of the geoelectrical characterization from 1D resistivity model and 2D resistivity electrical sections show that in the study area of Kabiri, there are 8 varieties of geoelectrical layers with different resistivity or conductivity. Near survey in the study area, the lowest resistivity is around 0.322 Ω·m, while the highest is about 92.1 Ω·m. These values illustrated where is possible to plant coffee for suggestion of specific fertilization plan for some area to improve the cultivation.展开更多
The disaster of seawater intrusion seriously affects people's lives and restricts economic development,so the detection and treatment of seawater intrusion is a long-term task.On the basis of field investigation a...The disaster of seawater intrusion seriously affects people's lives and restricts economic development,so the detection and treatment of seawater intrusion is a long-term task.On the basis of field investigation and water quality analysis,according to the change characteristics of apparent resistivity of groundwater after Cl-reaches 250 mg/L,the theoretical basis for the application of high-density resistivity method was determined,and the characteristic values of apparent resistivity for seawater intrusion interfaces in different geological characteristic regions in Laizhou Bay area were determined by typical profile tests.Combined with water quality investigation and other means,profiles for the high-density resistivity method were arranged,and the interfaces between saline and fresh water were accurately divided.展开更多
As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequen...As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequently occurred in the graph of apparent resistivity pseudo-section or inverted geoelectrical section obtained from high-density electrical technique,and are difficult to remove.In this study,the authors explain the mechanism of the false anomalies and put forward the horizontal differential field method to identify the false anomalies.Based on the analysis of modeling results,this method is applied in the surveying data in Xinlei Quarry of Jiuquan,and the results confirm the effectiveness of the horizontal differential field method.展开更多
High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according t...High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according to the vertical change of apparent resistivity.However,the artificial filling layer has the characteristics of heterogeneity and high porosity,which makes it challenging to detect the artificial filling layer by high-density electrical method.The key to solve this problem is to detect the difference of conductivity between the filling layer and the underlying bedrock.This paper takes the land in Chengjiangshan area of Huaibei City,Anhui Province as the detection target.On the basis of fully analyzing the physical properties of the artificial filling layer,two-dimensional high-density electrical survey and inversion are used to define the thickness of the artificial filling layer.The research shows that the highdensity resistivity method has obvious advantages in delineating the distribution of bedrock and the thickness of the filling layer,and the reliability of the high-density electrical method in the detection of the artificial filling layer,and delineates the scope of the filling layer is verified by the borehole data.展开更多
Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellit...Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellites,inverting the Earth’s three-dimensional conductivity distribution on a global scale becomes attainable.A key requirement in the global conductivity inversion is to have a forward solver with high-accuracy and efficiency.In this study,a finite volume method for global electromagnetic induction forward modeling is developed based on unstructured grids.Arbitrary polyhedral grids are supported in our algorithms to obtain high geometric adaptability.We employ a cell-centered collocated variable arrangement which allows convenient discretization for complex geometries and straightforward implementation of multigrid technique.To validate the method,we test our code with two synthetic models and compare our finite volume results with an analytical solution and a finite element numerical solution.Good agreements are observed between our solution and other results,indicating acceptable accuracy of the proposed method.展开更多
The ELECTRE(ELimination Et Choix Traduisant la REalite)method has gained widespread recognition as one of the most effective multi-criteria decision-making(MCDM)methods.Its versatility allows it to be applied in a wid...The ELECTRE(ELimination Et Choix Traduisant la REalite)method has gained widespread recognition as one of the most effective multi-criteria decision-making(MCDM)methods.Its versatility allows it to be applied in a wide range of areas such as engineering,economics,business,environmental management and many others.This paper aims to provide an overview of the ELECTRE method,including its fundamental concepts,applications,advantages,and limitations.At its core,the ELECTRE method is an outranking family of MCDM techniques,which allows for the direct comparison of alternatives based on a set of criteria.The method takes into account the preferences and importance of decision-makers and generates a ranking of the alternatives based on their relative strengths and weaknesses.The ELECTRE method is a powerful tool for decision-making,and its applicability to a wide range of fields demonstrates its versatility and adaptability.By understanding its concepts,applications,merits,and demerits,decision-makers can use the ELECTRE method to make informed and effective decisions in a variety of contexts.展开更多
The authors employ the high-density resistivity method to image the subsurface structure of a mountain in Erdaojiang District,Tonghua City,Jilin Province,China,to evaluate the potential risk of slope failure on surrou...The authors employ the high-density resistivity method to image the subsurface structure of a mountain in Erdaojiang District,Tonghua City,Jilin Province,China,to evaluate the potential risk of slope failure on surrounding residential areas and infrastructure,and identify a shallow fault that extends across the center of the mountain and is perpendicular to the mountain slope and accurately locate the spatial position and depth of another fault on the southern side of the mountain.The results provide an important basis for evaluating mountain slope stability.This study also demonstrates that the high-density resistivity method is effective for detecting mountain faults.展开更多
By determining the distribution and extent of geological structures surrounding the Mingyan Tunnel,Xicheng Town,Helong City,Jilin Province,we can evaluate the stability of the rock mass and assess potential hazards du...By determining the distribution and extent of geological structures surrounding the Mingyan Tunnel,Xicheng Town,Helong City,Jilin Province,we can evaluate the stability of the rock mass and assess potential hazards during tunnel construction.We use the high-density resistivity method to analyze the subsurface structure of the study area.Conductive anomalies are likely to represent joint and fissure systems within strongly weathered host rocks,and the bedrock surrounding the tunnel is relatively stable and does not contain well-developed faults.High-density resistivity analysis can provide valuable information in the context of tunnel engineering and safety.展开更多
Fluid flow in fractures controls subsurface heat and mass transport,which is essential for developing enhanced geothermal systems and radioactive waste disposal.Fracture permeability is controlled by fracture microstr...Fluid flow in fractures controls subsurface heat and mass transport,which is essential for developing enhanced geothermal systems and radioactive waste disposal.Fracture permeability is controlled by fracture microstructure(e.g.aperture,roughness,and tortuosity),but in situ values and their anisotropy have not yet been estimated.Recent advances in geophysical techniques allow the detection of changes in electrical conductivity due to changes in crustal stress and these techniques can be used to predict subsurface fluid flow.However,the paucity of data on fractured rocks hinders the quantitative interpretation of geophysical monitoring data in the field.Therefore,considering different shear displacements and chemical erosions,an investigation was conducted into the hydraulic-electric relationship as an elevated stress change in fractures.The simulation of fracture flows was achieved using the lattice Boltzmann method,while the electrical properties were calculated through the finite element method,based on synthetic faults incorporating elastic-plastic deformation.Numerical results show that the hydraulic and electrical properties depend on the rock's geometric properties(i.e.fracture length,roughness,and shear displacement).The permeability anisotropy in the direction parallel or perpendicular to the shear displacement is also notable in high stress conditions.Conversely,the permeability econductivity(i.e.,formation factor)relationship is unique under all conditions and follows a linear trend in logarithmic coordinates.However,both matrix porosity and fracture spacing alter this relationship.Both increase the slope of the linear trend,thereby changing the sensitivity of electrical observations to permeability changes.展开更多
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano...Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.展开更多
With the incessant propulsion of the Open Door Policy,which is related to the consolidation of international collaborative partnerships,an increasing number of Chinese companies are moving toward cooperating countries...With the incessant propulsion of the Open Door Policy,which is related to the consolidation of international collaborative partnerships,an increasing number of Chinese companies are moving toward cooperating countries to participate in infrastructure construction,employing a win-win strategy in favor of the people and governments of both countries.Among the cooperation domains,our country’s electrical companies have achieved a series of remarkable results in the international Engineering,Procurement,and Construction(EPC)project market with their outstanding business capabilities and technical advantages.Nevertheless,some shortcomings cannot be overlooked,the most notable of which appears to be the impediment associated with engineering translation,which has always been an obsession among translators of Chinese companies.Taking the transmission line project in the Republic of Madagascar as an example,an analysis of French-Chinese translation methods of electrical engineering terminology in the field of the transmission line is carried out.展开更多
With the development of distribution automation system, the centralized meter reading system has been adopted more and more extensively, which provides real-time electricity consumption data of end-users, and conseque...With the development of distribution automation system, the centralized meter reading system has been adopted more and more extensively, which provides real-time electricity consumption data of end-users, and consequently lays foundation for operating condition on-line analysis of distribution network. In this paper, a modified back/forward sweep method, which directly uses real-time electricity consumption data acquired from the centralized meter reading system, is proposedto realize voltage analysis based on 24-hour electricity consumption data of a typical transformer district. Furthermore, the calculated line losses are verified through data collected from the energy metering of the distribution transformer, illustrating that the proposed method can be applied in analyzing voltage level and discovering unknown energy losses, which will lay foundation for on-line analysis, calculation and monitoring of power distribution network.展开更多
Some unfavorable geological conditions can affect the construction of tunnels.In order to evaluate the damage degree of tunnel construction and determine the surrounding rock grade and stability of the tunnel,the auth...Some unfavorable geological conditions can affect the construction of tunnels.In order to evaluate the damage degree of tunnel construction and determine the surrounding rock grade and stability of the tunnel,the authors used high-density resistivity method to detect the surrounding rocks of Shimodong tunnel in Xicheng Town of Helong City.The underground resistivity structures of the entrance,exit and middle parts of the tunnel are obtained.Through analysis,it is found that there are no bedrock faults near the tunnel,although some joints and fissures are developed in some locations,which are characterized by low-resistivity anomalies.The tunnel structures are stable overall,favorable for safe and efficient construction.The study also proves the good application effect of the high-density resistivity method in tunnel safety detection.展开更多
The authors employ the high-density resistivity method during an archaeological investigation of Sumicheng site,an ancient city of the Tang Dynasty,to find evidence of human activities and locate a favorable target fo...The authors employ the high-density resistivity method during an archaeological investigation of Sumicheng site,an ancient city of the Tang Dynasty,to find evidence of human activities and locate a favorable target for archaeological excavation in the southern part of the outer city.There are two obvious high-resistivity structures,the south wall of the inner city and an ancient building near the south gate along the outer city wall,of which the resistivities are indicative of rammed soil foundations.The south wall of the inner city is continuous but is cut off abruptly to the east,which we suggest it is due to either wall damage or destruction.The resistivity signature of the target area is verified by archaeological excavation,proving the feasibility and effectiveness of implementing the high-density resistivity method for archaeological exploration.展开更多
The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational i...The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational institutes and hospitals. Usually electrical power companies are liable for electricity shortfall and power interruption. However, electricity end consumers are also equally responsible behind strange shortfall and unusual power interruption. Frequently, the consumers use the heavy electrical equipment in their homes including heaters, geysers, irons and water motors which causes the more electricity consumption, load shedding and huge amount of bills. For escaping the huge amount of electricity bill, the consumers commit the illegal and unethical connections. The illegal usage of electrical power failed the power companies to plan schedule load shedding accordingly and the other side the damaged electricity wires or Pole Mount Transformer increased faults due to overburdening, which directly affected on extend power interruption. In addition that, responsible teams of electrical power companies cannot reach instantly to repair faults and prevent the theft. Electricity thieving is social crime committed by the consumers or meter readers which causes the electricity strange shortfall within country. This paper presents the practical demonstration about the common energy theft methods and techniques done by electricity consumers within their home and residential building. In Pakistan EPC (electrical power companies) deploy the traditional electromechanical meters for electricity consumption measurements, however, these meters do not have any real time communication. Therefore there are many easy ways to manipulate the meter reading as well as internal structural of metering system.展开更多
A study of excavated material on the Gagnoa-Guéyo-Bamenadou road project in southwest Côte d’Ivoire was carried out using electrical resistivity tomography with a dipole-dipole configuration. This study aim...A study of excavated material on the Gagnoa-Guéyo-Bamenadou road project in southwest Côte d’Ivoire was carried out using electrical resistivity tomography with a dipole-dipole configuration. This study aimed to determine the nature and volume of the studied cuts. Based on the cumulative distances of the longitudinal sections of the road alignment superimposed on the tomographic profiles, a cumulative volume of 104681 m3 of material was determined. This volume comprises 88557 m3 of soft cuts and 16,124 m3 of rocky cuts, which can be reused in specific embankment zones. This work may, therefore be useful in the characterization of cuts in a preliminary design study, in order to anticipate changes during the road’s development and asphalting.展开更多
The visualization operation of railway four-electric engineering construction is an important part in railway′s construction,which plays a critical role in improving operation efficiency and it is smoothly finished o...The visualization operation of railway four-electric engineering construction is an important part in railway′s construction,which plays a critical role in improving operation efficiency and it is smoothly finished on railway four-electric majors′professional construction.According to the typical high-speed railway project construction′s technology,these four-electric professional construction′s technology scheme are made into construction method′s video,according to the technology plan′s characteristics of professional,visualization and information,under the premise of improving the efficiency about professional project management and construction of the railway four-electric project,the critical technology problems of railway four-electric project are solved.At the same time,it also improves efficiency of BIM model′s construction,the cooperation management′s efficiency of construction process,and the ability of integrating model information.展开更多
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
文摘In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.
文摘The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil tends to affect the agricultural coffee production system. Therefore, research related to geoelectrical properties of soil such as resistivity for characterization the region of the study for coffee cultivation purposes can improve and optimize the production. This resistivity method allows to investigate the subsurface through different techniques: 1D vertical electrical sounding and electrical imaging. The acquisition of data using these techniques permitted the creation of 2D resistivity cross section from the study area. The geoelectrical data was acquired by using a resistivity meter equipment and was processed in different softwares. The results of the geoelectrical characterization from 1D resistivity model and 2D resistivity electrical sections show that in the study area of Kabiri, there are 8 varieties of geoelectrical layers with different resistivity or conductivity. Near survey in the study area, the lowest resistivity is around 0.322 Ω·m, while the highest is about 92.1 Ω·m. These values illustrated where is possible to plant coffee for suggestion of specific fertilization plan for some area to improve the cultivation.
文摘The disaster of seawater intrusion seriously affects people's lives and restricts economic development,so the detection and treatment of seawater intrusion is a long-term task.On the basis of field investigation and water quality analysis,according to the change characteristics of apparent resistivity of groundwater after Cl-reaches 250 mg/L,the theoretical basis for the application of high-density resistivity method was determined,and the characteristic values of apparent resistivity for seawater intrusion interfaces in different geological characteristic regions in Laizhou Bay area were determined by typical profile tests.Combined with water quality investigation and other means,profiles for the high-density resistivity method were arranged,and the interfaces between saline and fresh water were accurately divided.
文摘As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequently occurred in the graph of apparent resistivity pseudo-section or inverted geoelectrical section obtained from high-density electrical technique,and are difficult to remove.In this study,the authors explain the mechanism of the false anomalies and put forward the horizontal differential field method to identify the false anomalies.Based on the analysis of modeling results,this method is applied in the surveying data in Xinlei Quarry of Jiuquan,and the results confirm the effectiveness of the horizontal differential field method.
文摘High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according to the vertical change of apparent resistivity.However,the artificial filling layer has the characteristics of heterogeneity and high porosity,which makes it challenging to detect the artificial filling layer by high-density electrical method.The key to solve this problem is to detect the difference of conductivity between the filling layer and the underlying bedrock.This paper takes the land in Chengjiangshan area of Huaibei City,Anhui Province as the detection target.On the basis of fully analyzing the physical properties of the artificial filling layer,two-dimensional high-density electrical survey and inversion are used to define the thickness of the artificial filling layer.The research shows that the highdensity resistivity method has obvious advantages in delineating the distribution of bedrock and the thickness of the filling layer,and the reliability of the high-density electrical method in the detection of the artificial filling layer,and delineates the scope of the filling layer is verified by the borehole data.
基金supported by the National Natural Science Foundation of China(41922027,4214200052)by the Macao Foundation+1 种基金by the Pre-research Project on Civil Aerospace Technologies No.D020308/D020303 funded by China National Space Administrationby the Macao Science and Technology Development Fund,grant No.0001/2019/A1。
文摘Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellites,inverting the Earth’s three-dimensional conductivity distribution on a global scale becomes attainable.A key requirement in the global conductivity inversion is to have a forward solver with high-accuracy and efficiency.In this study,a finite volume method for global electromagnetic induction forward modeling is developed based on unstructured grids.Arbitrary polyhedral grids are supported in our algorithms to obtain high geometric adaptability.We employ a cell-centered collocated variable arrangement which allows convenient discretization for complex geometries and straightforward implementation of multigrid technique.To validate the method,we test our code with two synthetic models and compare our finite volume results with an analytical solution and a finite element numerical solution.Good agreements are observed between our solution and other results,indicating acceptable accuracy of the proposed method.
文摘The ELECTRE(ELimination Et Choix Traduisant la REalite)method has gained widespread recognition as one of the most effective multi-criteria decision-making(MCDM)methods.Its versatility allows it to be applied in a wide range of areas such as engineering,economics,business,environmental management and many others.This paper aims to provide an overview of the ELECTRE method,including its fundamental concepts,applications,advantages,and limitations.At its core,the ELECTRE method is an outranking family of MCDM techniques,which allows for the direct comparison of alternatives based on a set of criteria.The method takes into account the preferences and importance of decision-makers and generates a ranking of the alternatives based on their relative strengths and weaknesses.The ELECTRE method is a powerful tool for decision-making,and its applicability to a wide range of fields demonstrates its versatility and adaptability.By understanding its concepts,applications,merits,and demerits,decision-makers can use the ELECTRE method to make informed and effective decisions in a variety of contexts.
基金Supported by National Key R&D Program of China and Fundamental Research Funds for the Central Universities(2017YFC0601305)。
文摘The authors employ the high-density resistivity method to image the subsurface structure of a mountain in Erdaojiang District,Tonghua City,Jilin Province,China,to evaluate the potential risk of slope failure on surrounding residential areas and infrastructure,and identify a shallow fault that extends across the center of the mountain and is perpendicular to the mountain slope and accurately locate the spatial position and depth of another fault on the southern side of the mountain.The results provide an important basis for evaluating mountain slope stability.This study also demonstrates that the high-density resistivity method is effective for detecting mountain faults.
基金Supported by The National Natural Science Foundation of China(41504076)Jilin Science and Technological Development Program(20180101093JC)。
文摘By determining the distribution and extent of geological structures surrounding the Mingyan Tunnel,Xicheng Town,Helong City,Jilin Province,we can evaluate the stability of the rock mass and assess potential hazards during tunnel construction.We use the high-density resistivity method to analyze the subsurface structure of the study area.Conductive anomalies are likely to represent joint and fissure systems within strongly weathered host rocks,and the bedrock surrounding the tunnel is relatively stable and does not contain well-developed faults.High-density resistivity analysis can provide valuable information in the context of tunnel engineering and safety.
基金supported in part by the Japan Society for the Promotion of Science (JSPS)under JSPS KAKENHI (Grant Nos.JP22K14635 and JP22H05303)a supporting program titled“Program to Support Research and Investigation on Important Basic Technologies Related to Radioactive Waste (2023 FY)”under the contract with the Ministry of Economy,Trade and Industry,Japan.
文摘Fluid flow in fractures controls subsurface heat and mass transport,which is essential for developing enhanced geothermal systems and radioactive waste disposal.Fracture permeability is controlled by fracture microstructure(e.g.aperture,roughness,and tortuosity),but in situ values and their anisotropy have not yet been estimated.Recent advances in geophysical techniques allow the detection of changes in electrical conductivity due to changes in crustal stress and these techniques can be used to predict subsurface fluid flow.However,the paucity of data on fractured rocks hinders the quantitative interpretation of geophysical monitoring data in the field.Therefore,considering different shear displacements and chemical erosions,an investigation was conducted into the hydraulic-electric relationship as an elevated stress change in fractures.The simulation of fracture flows was achieved using the lattice Boltzmann method,while the electrical properties were calculated through the finite element method,based on synthetic faults incorporating elastic-plastic deformation.Numerical results show that the hydraulic and electrical properties depend on the rock's geometric properties(i.e.fracture length,roughness,and shear displacement).The permeability anisotropy in the direction parallel or perpendicular to the shear displacement is also notable in high stress conditions.Conversely,the permeability econductivity(i.e.,formation factor)relationship is unique under all conditions and follows a linear trend in logarithmic coordinates.However,both matrix porosity and fracture spacing alter this relationship.Both increase the slope of the linear trend,thereby changing the sensitivity of electrical observations to permeability changes.
基金supported by the National Natural Science Foundation of China(T2322015,22209094,22209093,and 22109086)the National Key Research and Development Program(2021YFB2500300)+2 种基金the Open Research Fund of CNMGE Platform&NSCC-TJOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Tsinghua University Initiative Scientific Research Program。
文摘Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.
文摘With the incessant propulsion of the Open Door Policy,which is related to the consolidation of international collaborative partnerships,an increasing number of Chinese companies are moving toward cooperating countries to participate in infrastructure construction,employing a win-win strategy in favor of the people and governments of both countries.Among the cooperation domains,our country’s electrical companies have achieved a series of remarkable results in the international Engineering,Procurement,and Construction(EPC)project market with their outstanding business capabilities and technical advantages.Nevertheless,some shortcomings cannot be overlooked,the most notable of which appears to be the impediment associated with engineering translation,which has always been an obsession among translators of Chinese companies.Taking the transmission line project in the Republic of Madagascar as an example,an analysis of French-Chinese translation methods of electrical engineering terminology in the field of the transmission line is carried out.
文摘With the development of distribution automation system, the centralized meter reading system has been adopted more and more extensively, which provides real-time electricity consumption data of end-users, and consequently lays foundation for operating condition on-line analysis of distribution network. In this paper, a modified back/forward sweep method, which directly uses real-time electricity consumption data acquired from the centralized meter reading system, is proposedto realize voltage analysis based on 24-hour electricity consumption data of a typical transformer district. Furthermore, the calculated line losses are verified through data collected from the energy metering of the distribution transformer, illustrating that the proposed method can be applied in analyzing voltage level and discovering unknown energy losses, which will lay foundation for on-line analysis, calculation and monitoring of power distribution network.
基金National Key R&D Program of China(2017YFC0601305)Fundamental Research Funds for the Central Universities.
文摘Some unfavorable geological conditions can affect the construction of tunnels.In order to evaluate the damage degree of tunnel construction and determine the surrounding rock grade and stability of the tunnel,the authors used high-density resistivity method to detect the surrounding rocks of Shimodong tunnel in Xicheng Town of Helong City.The underground resistivity structures of the entrance,exit and middle parts of the tunnel are obtained.Through analysis,it is found that there are no bedrock faults near the tunnel,although some joints and fissures are developed in some locations,which are characterized by low-resistivity anomalies.The tunnel structures are stable overall,favorable for safe and efficient construction.The study also proves the good application effect of the high-density resistivity method in tunnel safety detection.
基金projects of Jilin Provincial Institute of Cultural Relics and Archaeology(No.3S318B564423)National Key R&D Program of China(No.2017YFC0601305)Fundamental Research Funds for the Central Universities.
文摘The authors employ the high-density resistivity method during an archaeological investigation of Sumicheng site,an ancient city of the Tang Dynasty,to find evidence of human activities and locate a favorable target for archaeological excavation in the southern part of the outer city.There are two obvious high-resistivity structures,the south wall of the inner city and an ancient building near the south gate along the outer city wall,of which the resistivities are indicative of rammed soil foundations.The south wall of the inner city is continuous but is cut off abruptly to the east,which we suggest it is due to either wall damage or destruction.The resistivity signature of the target area is verified by archaeological excavation,proving the feasibility and effectiveness of implementing the high-density resistivity method for archaeological exploration.
文摘The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational institutes and hospitals. Usually electrical power companies are liable for electricity shortfall and power interruption. However, electricity end consumers are also equally responsible behind strange shortfall and unusual power interruption. Frequently, the consumers use the heavy electrical equipment in their homes including heaters, geysers, irons and water motors which causes the more electricity consumption, load shedding and huge amount of bills. For escaping the huge amount of electricity bill, the consumers commit the illegal and unethical connections. The illegal usage of electrical power failed the power companies to plan schedule load shedding accordingly and the other side the damaged electricity wires or Pole Mount Transformer increased faults due to overburdening, which directly affected on extend power interruption. In addition that, responsible teams of electrical power companies cannot reach instantly to repair faults and prevent the theft. Electricity thieving is social crime committed by the consumers or meter readers which causes the electricity strange shortfall within country. This paper presents the practical demonstration about the common energy theft methods and techniques done by electricity consumers within their home and residential building. In Pakistan EPC (electrical power companies) deploy the traditional electromechanical meters for electricity consumption measurements, however, these meters do not have any real time communication. Therefore there are many easy ways to manipulate the meter reading as well as internal structural of metering system.
文摘A study of excavated material on the Gagnoa-Guéyo-Bamenadou road project in southwest Côte d’Ivoire was carried out using electrical resistivity tomography with a dipole-dipole configuration. This study aimed to determine the nature and volume of the studied cuts. Based on the cumulative distances of the longitudinal sections of the road alignment superimposed on the tomographic profiles, a cumulative volume of 104681 m3 of material was determined. This volume comprises 88557 m3 of soft cuts and 16,124 m3 of rocky cuts, which can be reused in specific embankment zones. This work may, therefore be useful in the characterization of cuts in a preliminary design study, in order to anticipate changes during the road’s development and asphalting.
文摘The visualization operation of railway four-electric engineering construction is an important part in railway′s construction,which plays a critical role in improving operation efficiency and it is smoothly finished on railway four-electric majors′professional construction.According to the typical high-speed railway project construction′s technology,these four-electric professional construction′s technology scheme are made into construction method′s video,according to the technology plan′s characteristics of professional,visualization and information,under the premise of improving the efficiency about professional project management and construction of the railway four-electric project,the critical technology problems of railway four-electric project are solved.At the same time,it also improves efficiency of BIM model′s construction,the cooperation management′s efficiency of construction process,and the ability of integrating model information.