Sweetpotato(Ipomoea batatas(L.)Lam.)is a widely grown food crop especially in developing countries.Increasing storage-root yield and dry-matter content has been the main breeding objective of the crop,and DNA marker-a...Sweetpotato(Ipomoea batatas(L.)Lam.)is a widely grown food crop especially in developing countries.Increasing storage-root yield and dry-matter content has been the main breeding objective of the crop,and DNA marker-assisted breeding is needed for this purpose.In this study,using a mapping population of 500 F1 individuals from a cross between Xushu 18(female)and Xu 781(male),we constructed a highdensity genetic linkage map of sweetpotato using 601 simple-sequence repeat(SSR)primer pairs.The Xushu 18 map contained 90 linkage groups with 5547 SSR markers and spanned 18,263.5 cM,and the Xu 781 map contained 90 linkage groups with 4599 SSR markers and spanned 18,043.7 cM,representing the highest genome coverage yet reported for sweetpotato.We identified 33 QTL for storage-root yield and 16 QTL for dry-matter content,explaining respectively 6.5%–47.5%and 3.2%–18.9%of variation.These results provide a foundation for fine-mapping and cloning of QTL and for marker-assisted breeding in sweetpotato.展开更多
High-density linkage maps are essential tools for genome analysis of various biological traits. Our developed compact multi-gel system, HEGS (high efficiency genome scanning) is a high-throughput and high-cost-perfo...High-density linkage maps are essential tools for genome analysis of various biological traits. Our developed compact multi-gel system, HEGS (high efficiency genome scanning) is a high-throughput and high-cost-performance electrophoresis apparatus. Using this system, a high-density (average interval 2.3 cM) map with 1 065 AFLP and 63 SSR markers was constructed from recombinant inbred lines of a japonica and indica hybrid in just two months of electrophoreses by a single person. More than 50% of the mapped AFLP markers were commonly polymorphic for several combinations between japonica and indica rice and 15% were applicable for genetically closer crosses between upland and lowland types of japonica rice. This system can be used for rapid analyses of all kinds of markers.展开更多
A high-density linkage map was constructed for an F2 population derived from an Interspecific cross of cultivated allotetraploid species between Gossypium hirsutum L. and G. barbadense L. A total of 186 F2 individuals...A high-density linkage map was constructed for an F2 population derived from an Interspecific cross of cultivated allotetraploid species between Gossypium hirsutum L. and G. barbadense L. A total of 186 F2 individuals from the Interspecific cross of "CRI 36 × Hal 7124" were genotyped at I 252 polymorphic loci Including a novel marker system, target region amplification polymorphism (TRAP). The map consists of 1 097 markers, including 697 simple se- quence repeats (SSRs), 171 TRAPs, 129 sequence-related amplified polymorphisms, 98 amplified fragment length polymorphisms, and two morphological markers, and spanned 4 536.7 cM with an average genetic distance of 4.1 cM per marker. Using 45 duplicated SSR loci among chromosomes, 11 of the 13 pairs of homologous chromosomes were Identified In tetraploid cotton. This map will provide an essential resource for high resolution mapping of quantitative trait loci and molecular breeding in cotton.展开更多
To introgress the good fiber quality and yield from Gossypium barbadense into a commercial Upland cotton variety, a high‐density simple sequence repeat (SSR) genetic linkage map was developed from a BC1F1 populatio...To introgress the good fiber quality and yield from Gossypium barbadense into a commercial Upland cotton variety, a high‐density simple sequence repeat (SSR) genetic linkage map was developed from a BC1F1 population of Gossypium hirsutum × Gossypium barbadense. The map com-prised 2,292 loci and covered 5115.16 centiMorgan (cM) of the cotton AD genome, with an average marker interval of 2.23 cM. Of the marker order for 1,577 common loci on this new map, 90.36% agrees well with the marker order on the D genome sequence genetic map. Compared with five pub-lished high‐density SSR genetic maps, 53.14% of marker loci were newly discovered in this map. Twenty‐six quantitative trait loci (QTLs) for lint percentage (LP) were identified on nine chromosomes. Nine stable or common QTLs could be used for marker‐assisted selection. Fifty percent of the QTLs were from G. barbadense and increased LP by 1.07%–2.41%. These results indicated that the map could be used for screening chromosome substitution segments from G. barbadense in the Upland cotton background, identifying QTLs or genes from G. barbadense, and further developing the gene pyramiding effect for improving fiber yield and quality.展开更多
Genetic linkage maps are essential for studies of genetics, genomic structure, and genomic evolution, and for mapping quantitative trait loci (QTL). Identification of molecular markers and construction of genetic link...Genetic linkage maps are essential for studies of genetics, genomic structure, and genomic evolution, and for mapping quantitative trait loci (QTL). Identification of molecular markers and construction of genetic linkage maps in tobacco (Nicotiana tabacum L.), a classical model plant and important economic crop, have remained limited. In the present study we identified a large number of single nucleotide polymorphism (SNP) markers and constructed a high-density SNP genetic map for tobacco using restriction site-associated DNA sequencing. In 1216.30 Gb of clean sequence obtained using the Illumina HiSeq 2000 sequencing platform, 99,647,735 SNPs were identified that differed between 203 sequenced plant genomes and the tobacco reference genome. Finally, 13,273 SNP markers were mapped on 24 high-density tobacco genetic linkage groups. The entire linkage map spanned 3421.80 cM, with a mean distance of 0.26 cM between adjacent markers. Compared with genetic linkage maps published previously, this version represents a considerable improvement in the number and density of markers. Seven QTL for resistance to cucumber mosaic virus (CMV) in tobacco were mapped to groups 5 and 8. This high-density genetic map is a promising tool for elucidation of the genetic bases of QTL and for molecular breeding in tobacco.展开更多
Simple sequence repeat(SSR) markers have been proved to be a very powerful tool for quantitative trait locus(QTL) mapping, marker-assisted selection and comparative genomics research in many crop species. However, a h...Simple sequence repeat(SSR) markers have been proved to be a very powerful tool for quantitative trait locus(QTL) mapping, marker-assisted selection and comparative genomics research in many crop species. However, a high-density SSR genetic linkage map is still lacking because there are only a few SSR markers available in sweet potato. In this study, a total of 2545 simple sequence repeat(SSR) primer pairs, including 1215 genomic SSR(gSSR) primer pairs and 1330 BES-SSR(bSSR) primer pairs designed from the genome sequence and BAC-end sequence of sweet potato, respectively, were screened with sweet potato cultivars Luoxushu 8 and Zhengshu 20 and their randomly sampled two F1 individuals and 571 of them generated polymorphic bands. The selected 571 polymorphic SSR primer pairs and 35 EST-based SSR(eSSR) primer pairs developed at our laboratory were used to genotype 240 F1 individuals derived from a cross between Luoxushu 8 and Zhengshu 20. A double pseudo-test-cross strategy was applied for linkage analysis. The Luoxushu 8 map included 90 linkage groups with 5057 SSR markers and covered 13,299.9 cM with a marker density of 2.6 cM, and the Zhengshu 20 map contained 90 linkage groups with 3009 SSR markers and covered 11,122.9 cM with a marker density of 3.7 cM. Fifteen homologous groups were identified in both parent maps. These are the first SSR linkage maps consisting of the complete 90 linkage groups and 15 homologous groups, which are consistent with the autohexaploid nature of sweetpotato, and are also the linkage maps with the highest SSR marker density reported to date.These results provide a basis for QTL mapping, marker-assisted breeding and comparative genomics research of sweet potato.展开更多
Pyropia yezoensis is an important macroalga because of its extensive global distribution and economic importance.Color is an important trait in the thalli of P.yezoensis,it is also an effective marker to identify the ...Pyropia yezoensis is an important macroalga because of its extensive global distribution and economic importance.Color is an important trait in the thalli of P.yezoensis,it is also an effective marker to identify the hybridization in genetic breeding.In this study,a high-density genetic linkage map was constructed based on high-throughput single nucleotide polymorphism(SNP)markers,and used for analyzing the quantitative trait loci(QTLs)of red color trait in the thalli of P.yezoensis.The conchospore undergoes meiosis to develop into an ordered tetrad,and each cell has a haploid phenotype and can grow into a single individual.Based on this theory,F1 haploid population was used as the mapping population.The map included 531 SNP markers,394.57 cM long on average distance of 0.74 cM.Collinear analysis of the genetic linkage map and the physical map indicated that the coverage between the two maps was 79.42%.Furthermore,QTL mapping identified six QTLs for the chromosomal regions associated with the red color trait of the thalli.The value of phenotypic variance explained(PVE)by an individual QTL ranged from 4.71%-63.11%.And QTL qRed-1-1,with a PVE of 63.11%,was considered the major QTL.Thus,these data may provide a platform for gene and QTL fine mapping,and marker-assisted breeding in P.yezoensis in the future.展开更多
Grape berry shape is an important agricultural trait.Clarifying its genetic basis is significant for cultivating grape varieties that meet market demands.However,the current study by forward genetics has not achieved ...Grape berry shape is an important agricultural trait.Clarifying its genetic basis is significant for cultivating grape varieties that meet market demands.However,the current study by forward genetics has not achieved in-depth results.Here,a high-density map was constructed to identify quantitative trait loci(QTLs)for berry shape.A total of 358709 polymorphic SNPs were obtained using whole-genome resequencing(WGS)based on 208 F2 individuals derived from round grape‘E42-6’and oblong grape‘Rizamat’.The 1635.65 cM high-density map was divided into 19 linkage groups with an average distance of 0.37 cM.Using this map,three significant QTLs for fruit shape index(ShI:ratio of berry length to berry width)identified over three years were mapped onto LG4 and LG5,including one stable QTL on Chr5 with the genomic region of 0.47–1.94 Mb.Combining with gene annotation and expression patterns based on RNA-seq data from two contrasting F2 individuals with round and oblong berry(their average ShI was 1.89 and 1.10,respectively)at four developmental stages,four candidate genes were selected from the above QTLs.They were mainly involved in DNA replication,cell wall modification,and phytohormone biosynthesis.Further analysis of RNA-seq data revealed that several important phytohormone synthesis and metabolic pathways were enriched based on differentially expressed genes(DEGs),which was consistent with the results of QTL mapping for genes related to plant hormone biosynthesis in the F2 population.Furthermore,a comparison of plant hormone content showed that there were significant differences in IAA and tZ content between the two contrasting F2 individuals at different developmental stages.Our findings provide molecular insights into the genetic variation in grape berry shape.Stable QTLs and their tightly linked markers offer the possibility of marker-assisted selection to accelerate berry shape breeding.展开更多
Soil salinity is one of the major environmental constraints that limits crop yield and nearly 7%of the total area worldwide is affected by salinity.Salinity-induced oxidative stress causes membrane damage during germi...Soil salinity is one of the major environmental constraints that limits crop yield and nearly 7%of the total area worldwide is affected by salinity.Salinity-induced oxidative stress causes membrane damage during germination and seedling growth.Indian mustard is a major oilseed crop in India and its production and productivity are severely affected by salt stress.Breeding Brassica cultivars for salinity tolerance by conventional means is very difficult and time-consuming.Therefore,understanding the molecular components associated with salt tolerance is needed to facilitate breeding for salt tolerance in Brassica.In this investigation,quantitative trait loci(QTLs)associated with salt tolerance were identified using F_(2:3)mapping population developed from a cross between CS52(salinity tolerant)and RH30(salinity sensitive).Parents and F_(2:3)were evaluated under controlled and salinity stress conditions for 14 morpho-physiological traits for two consecutive generations(F2 and F_(2:3)),explaining proportion of the phenotypic variance under control condition.Simple sequence repeat(SSR)markers were used for mapping studies.A genetic linkage map based on 42 simple sequence repeats(SSRs)markers was constructed covering 2298.5 cM(Haldane)to identify the loci associated with salt tolerance in Brassica juncea.Forty-one SSRs showing polymorphism in the parents(CS52 and RH30)were mapped on 8 linkage groups(C1–C8).One marker(nga 129)did not map to any of the linkage group and was excluded from mapping.Linkage group 5(C5;317.9 cM)was longest and linkage group 1(C1,255.0 cM)was shortest.Further,we identified 15 QTLs controlling 8 traits using F_(2:3)population.These QTLs explained 12.44–60.63%of the phenotypic variation with a LOD score range of 3.62–5.97.Out of these QTLs,QMI4.1 related to membrane injury showed 51.28%phenotypic variance with a LOD score of 3.34.QTL QBYP8.1 related to biological yield per plant showed 60.63%phenotypic variance at a LOD score of 3.62.The highest LOD score of 5.97 was recorded for QTL related to seed yield per plant(QSYP4.1).Major QTLs were QTL for biological yield per plant(QBYP8.1),QTL for siliquae per plant(QSP4.1),QTL for primary branches(QPB4.1),QTLs for seed per siliqua(QSS4.1,QSS4.2),QTL for seed yield per plant(QSYP4.1),and QTL for membrane injury(QMI8.1)which showed more than 50%phenotypic variance.These QTLs identified in our study need to be confirmed in other populations as well so that these can be used in marker-assisted selection and breeding to enhance salt tolerance in Brassica juncea.展开更多
BACKGROUND Left atrial flutter without prior cardiac interventions is uncommon,especially dual-loop macro-reentry atrial flutter.The critical step to ablate dual-loop macroreentry atrial flutter is to identify the dom...BACKGROUND Left atrial flutter without prior cardiac interventions is uncommon,especially dual-loop macro-reentry atrial flutter.The critical step to ablate dual-loop macroreentry atrial flutter is to identify the dominant loop and key isthmus.Although entrainment mapping could help identify the dominant loop and key isthmus,it may alter or terminate tachycardia.High-density mapping allows the generation of electroanatomic maps without altering or terminating tachycardia.CASE SUMMARY Here,we report a case of symptomatic left atrial flutter without prior intervention.In this case,high-density mapping revealed a dual-loop macro-reentry around the mitral annulus and central scar of the anterior wall.The propagation result showed that the dominant loop was around the mitral annulus,and the key isthmus was between the central scar and mitral annulus.The atrial flutter terminated successfully after ablation was performed.CONCLUSION In this case,we demonstrate that high-density mapping technology may help identify the dominant loop of dual-loop atrial flutter without entrainment,which makes ablation easier.展开更多
In this study, we reported the repaid construction of a molecular marker linkage map of rice (Oryza sativa L.). An F-2 population from the cross between Annong S-1 and Nanjing 11 was used to construct a genetic linkag...In this study, we reported the repaid construction of a molecular marker linkage map of rice (Oryza sativa L.). An F-2 population from the cross between Annong S-1 and Nanjing 11 was used to construct a genetic linkage map of rice. Total of 142 newly screened AFLP markers and 30 anchor markers (25 SSR markers and 5 RFLP markers) were mapped on the 12 chromosomes covering 1537.4 cM of rice genome. The average interval between these markers was 9.0 cM. The total work which usually was finished in more than one year was finished within only 3 months by one person. This is the first plant AFLP map developed in China. A new thermosensitive genic male sterile gene in rice, tms5, was Egged and mapped onto chromosome 2 during the development of the linkage map.展开更多
The use of markers and linkage map construction are important for QTL mapping in pigs. In this article, the genetic characteristics were studied and the linkage map was constructed in a pig resource population includi...The use of markers and linkage map construction are important for QTL mapping in pigs. In this article, the genetic characteristics were studied and the linkage map was constructed in a pig resource population including 214 individuals by typing 39 microsatellite marker loci on Sus scrofa chromosomes, SSC4, SSC6, SSC7, SSC8, and SSC13. Results indicated that the average allele number, the average observed beterozygosity (Ho), and the average polymorphism information content (PIC) in F1 and F2 population were 3.2, 0.528, 0.463 and 3.2, 0.496, 0.447, respectively. In the pig resource population, the average informative meiosis (IM) was 217.4 (44-316), and the average linkage map length between the two sexes on the five chromosomes were 172.3 cM (SSC4), 168.7 cM (SSC6), 191.7 cM (SSC7), 197.3 cM (SSC8), and 178.3 cM (SSC13). The orders of microsatellite marker loci in the linkage maps were identical to, but the length was greater than, those of USDA-MARC reference map. The results of this research showed the genetic relationship and genetic characteristics of the microsatellite markers in the pig resource family population, and the linkage map could be used to for QTL mapping in the subsequent study.展开更多
In this study, an RIL (recombinant inbred line) population containing 240 lines was developed by single seed descent method (SSD) based on a parent com- bination of small-grain indica cultivar Kasalath and large-g...In this study, an RIL (recombinant inbred line) population containing 240 lines was developed by single seed descent method (SSD) based on a parent com- bination of small-grain indica cultivar Kasalath and large-grain japanica cultivar TD70 with significant differences in plant type traits, to construct the molecular genetic linkage map. Totally 838 SSR (Simple Sequence Repeat) markers were used for polymorphism screening between parents, 302 SSR markers with polymorphism were detected, with a frequency of 36.04%; 141 SSR markers with clear amplified bands and uniform distribution in the genome were finally used for genotype analysis of the RIL population. According to the experimental results, the frequency of male and female genotype in this RIL population was respectively 53% and 47%, suggesting good balance in population structure. A molecular genetic linkage map of rice was constructed by 141 markers based on a RIL population of 240 lines, with a total genetic distance of about 1 832.47 cM covering all 12 chromosomes, an average genetic distance between markers of 12.70 cM and a range of genetic distance be- tween markers of 0.43-36.11 cM, which is consistent with basic requirements of quantitative trait locus (QTL) mapping. Except for few markers on chromosomes 1 and 8, the order and location of markers is similar to the published sequences of Nipponbare. QTL analysis for the tiller angle was conducted with this RIL population of 240 lines, and results showed that three QTLs controlling tiller angle were detected on chromosome 8, 9 and 11, which were named qTA8, qTA9 and qTA11, with a contribution rate of 4.10%, 26.08% and 4.35%, respectively. To be specific, qTA9 contained Tiller Angle Controlling (TAC1) gene. The construction of this molecular genetic linkage map laid the foundation for genetic analysis and QTL mapping of various traits in the progeny of indica and japonica.展开更多
Sinonovacula constricta is one of the important economic aquaculture species in China. In this study, we constructed genetic linkage maps of S. constricta based on 300 microsatellite markers derived from RAD-seq using...Sinonovacula constricta is one of the important economic aquaculture species in China. In this study, we constructed genetic linkage maps of S. constricta based on 300 microsatellite markers derived from RAD-seq using an F1 full-sib family. The female map contained 204 microsatellites assigned to 22 linkage groups, which covered 1529.5 cM with an average interval of 10.3 cM. The male consisted of 187 microsatellites in 19 linkage groups corresponding to the haploid chromosome number(n(28)19), which spanned 1429.3 cM with an average interval of 8.7 cM. The genome coverage was approximately 83.5% and 81.4%, respectively. An integrated map was constructed according to the common markers in parental linkage groups, which had a total length of 1683.8 cM with an average interval of 7.3 cM. The genome coverage of the integrated map was approximately 86.3%. The genetic linkage map would form the foundation for further studies on the quantitative trait loci(QTL), as well as accelerating the breeding process of this species.展开更多
Molecular genetic maps of crop species can be used in a variety of ways in breeding and genomic research such as identification and mapping of genes and quantitative trait loci (QTLs) for morphological, physiologica...Molecular genetic maps of crop species can be used in a variety of ways in breeding and genomic research such as identification and mapping of genes and quantitative trait loci (QTLs) for morphological, physiological and economic traits of crop species. However, a comprehensive genetic linkage map for cultivated peanut has not yet been developed due to the extremely low frequency of DNA polymorphism in cultivated peanut. In this study, 142 recombinant inbred lines (RILs) derived from a cross between Yueyou 13 and Zhenzhuhei were used as mapping population in peanut (Arachis hypogaea L.). A total 652 pairs of genomic-SSR primer and 392 pairs of EST-SSR primer were used to detect the polymorphisms between the two parents. 141 SSR primer pairs, 127 genomic-SSR and 14 EST-SSR ones, which can be used to detect polymorphisms between the two parents, were selected to analyze the RILs population. Thus, a linkage genetic map which consists of 131 SSR loci in 20 linkage groups, with a coverage of 679 cM and an average of 6.12 cM of inter-maker distance was constructed. The putative functions of 12 EST-SSR markers located on the map were analyzed. Eleven showed homology to gene sequences deposited in GenBank. This is the first report of construction of a comprehensive genetic map with SSR markers in peanut (Arachis hypogaea L.). The map presented here will provide a genetic framework for mapping the qualitative and quantitative trait in peanut.展开更多
Simple sequence repeat(SSR)markers have previously been applied to linkage mapping of the pea(Pisum sativum L.)genome.However,the transferability of existing loci to the molecularly distinct Chinese winter pea gene po...Simple sequence repeat(SSR)markers have previously been applied to linkage mapping of the pea(Pisum sativum L.)genome.However,the transferability of existing loci to the molecularly distinct Chinese winter pea gene pool was limited.A novel set of pea SSR markers was accordingly developed.Together with existing SSR sequences,the genome of the G0003973(winter hardy)×G0005527(cold sensitive)cross was mapped using 190 F2individuals.In total,157 SSR markers were placed in 11 linkage groups with an average interval of 9.7 cM and total coverage of 1518 cM.The novel markers and genetic linkage map will be useful for marker-assisted pea breeding.展开更多
In this study,a linkage genetic map was constructed using a F2 population derived from a cross between a elite maize inbred,B73,and its progenitor,Teosinte(Z.mays ssp.mexicana),through 205 simple sequence repeat(SS...In this study,a linkage genetic map was constructed using a F2 population derived from a cross between a elite maize inbred,B73,and its progenitor,Teosinte(Z.mays ssp.mexicana),through 205 simple sequence repeat(SSR) markers and one morphological marker.By Mapmaker 3.0,polymorphic markers were clustered into 10 groups,covering 10 chromosomes of maizexteosinte,with a total length of 2 002.4 cM and an average interval of 9.7 cM.Genotyping errors were detected using R/QTL(LOD=2.0) in 109 markers referring to 176 individuals,distributed across all 10 chromosomes with a ratio 1.2%.Projected error loci were re-run and 304 out of the 460 were confirmed as errors and replaced.A new linkage map was constructed,in which markers maintained the same order but the total map length decreased to 1 947.8 cM,with an average interval of 9.4 cM between markers.In total,25.2%(P0.05) markers were identified to have segregation distortion,in which 34.6% deviated towards the pollination parent(B73),30.8% deviated towards Teosinte,32.7% deviated towards heterozygote and 1.9% deviated towards both parents.This map was also compared with published maizexteosinte and maize IBM map.展开更多
The construction of high density genetic linkage map provides a powerful tool to detect and map quantitative trait loci(QTLs) controlling agronomically important traits. In this study, simple sequence repeat(SSR) mark...The construction of high density genetic linkage map provides a powerful tool to detect and map quantitative trait loci(QTLs) controlling agronomically important traits. In this study, simple sequence repeat(SSR) markers and Illumina 9K i Select single nucleotide polymorphism(SNP) genechip were employed to construct one genetic linkage map of common wheat(Triticum aestivum L.) using 191 recombinant inbred lines(RILs) derived from cross Yu 8679×Jing 411. This map included 1 901 SNP loci and 178 SSR loci, covering 1 659.9 c M and 1 000 marker bins, with an average interval distance of 1.66 c M. A, B and D genomes covered 719.1, 703.5 and 237.3 c M, with an average interval distance of 1.66, 1.45 and 2.9 c M, respectively. Notably, the genetic linkage map covered 20 chromosomes, with the exception of chromosome 5D. Bioinformatics analysis revealed that 1 754(92.27%) of 1 901 mapped SNP loci could be aligned to 1 215 distinct wheat unigenes, among which 1 184(97.4%) were located on o ne single chromosome, and the rest 31(2.6%) were located on 2 to 3 chromosomes. By performing in silico comparison, 214 chromosome deletion bin-mapped expressed sequence tags(ESTs), 1 043 Brachypodium genes and 1 033 rice genes were further added onto the genetic linkage map. This map not only integrated genetic and physical maps, SSR and SNP loci, respectively, but also provided the information of Brachypodium and rice genes corresponding to 1 754 SNP loci. Therefore, it will be a useful tool for comparative genomics analysis, fine mapping of QTL/gene controlling agronomically important traits and marker-assisted selection breeding in wheat.展开更多
Wheat crops in China are constantly challenged by stripe rust. Deployment of cultivars with diverse resistances is the best strategy to control the disease. A recombinant inbred line(RIL) population derived from a cro...Wheat crops in China are constantly challenged by stripe rust. Deployment of cultivars with diverse resistances is the best strategy to control the disease. A recombinant inbred line(RIL) population derived from a cross between the resistant cultivar Chakwal 86 and susceptible landrace Mingxian 169 was studied in multiple environments to examine the underlying genetics and to identify quantitative trait loci(QTL) for stripe rust resistance.One hundred and twenty-eight RILs were genotyped with wheat 35 K SNP array and a genome-wide linkage map with 1480 polymorphic SNP markers, or bins, was constructed.Two major QTL on chromosomes 1BL and 3BS, and one minor QTL on 6BS had significant effects in reducing stripe rust severity. The QTL were validated using composite interval mapping(CIM) and inclusive composite interval mapping(ICIM). These methods explained59.0%–74.1% of the phenotype variation in disease response. The QTL on chromosome 1 BL was confirmed to be Yr29/Lr46 and the one on 3BS was the resistance allele identified in CIMMYT germplasm but was not Yr30/Sr2. The QTL on 6BS probably corresponded to previously known QTL. RILs with combined QTL were more resistant than those with single or no QTL. Kompetitive allele-specific PCR(KASP) assays for the QTL with largest effect QTL on chromosome 3BS were performed on a subset of RILs and 150 unrelated wheat lines. The QTL on 3BS with its linked KASP markers can be used in marker-assisted selection to improve stripe rust resistance in breeding programs.展开更多
Wheat powdery mildew(Blumeria graminis f.sp.tritici, Bgt) is a disease of increasing importance globally due to the adoption of high yielding varieties and modern sustainable farming technologies.Growing resistant cul...Wheat powdery mildew(Blumeria graminis f.sp.tritici, Bgt) is a disease of increasing importance globally due to the adoption of high yielding varieties and modern sustainable farming technologies.Growing resistant cultivars is a preferred approach to managing this disease, and novel powdery mildew resistance genes are urgently needed for new cultivar development.A genome-wide association study was performed on a panel of 1292 wheat landraces and historical cultivars using 5011 single nucleotide polymorphism(SNP)markers.The association panel was evaluated for reactions to three Bgt inoculants, OKS(14)-B-3-1, OKS(14)-C-2-1, and Bgt15.Linkage disequilibrum(LD) analysis indicated that genome-wide LD decayed to 0.1 at 23 Mb, and population structure analysis revealed seven subgroups in the panel.Association analysis using a mixed linear model(MLM) identified three loci for powdery mildew resistance on chromosome 2 B, designated QPm.stars-2BL1,QPm.stars-2BL2, and QPm.stars-2BL3.To evaluate the efficacy of GWAS in gene discovery,QPm.stars-2BL2 was validated using F2 and F2:3 populations derived from PI420646 × OK1059060-126135-3.Linkage analysis delimited the powdery mildew resistance gene in PI 420646 to an interval where QPm.stars-2BL2 was located, lending credence to the GWAS results.QPm.stars-2BL1 and QPm.stars-2BL3, which were associated with four SNPs located at 457.7–461.7 Mb and two SNPs located at 696.6–715.9 Mb in the Chinese Spring reference IWGSC RefSeq v1.0, respectively, are likely novel loci for powdery mildew resistance and can be used in wheat breeding to improve powdery mildew resistance.展开更多
基金supported by the National Key Research and Development Program of China(2019YFD1001300,2019YFD1001301)the Earmarked Fund for CARS-10-Sweetpotato(CARS-10)+1 种基金the Beijing Food Crops Innovation Consortium Program(BAIC02-2022)Hebei Key R&D Program(20326320D,22322911D)。
文摘Sweetpotato(Ipomoea batatas(L.)Lam.)is a widely grown food crop especially in developing countries.Increasing storage-root yield and dry-matter content has been the main breeding objective of the crop,and DNA marker-assisted breeding is needed for this purpose.In this study,using a mapping population of 500 F1 individuals from a cross between Xushu 18(female)and Xu 781(male),we constructed a highdensity genetic linkage map of sweetpotato using 601 simple-sequence repeat(SSR)primer pairs.The Xushu 18 map contained 90 linkage groups with 5547 SSR markers and spanned 18,263.5 cM,and the Xu 781 map contained 90 linkage groups with 4599 SSR markers and spanned 18,043.7 cM,representing the highest genome coverage yet reported for sweetpotato.We identified 33 QTL for storage-root yield and 16 QTL for dry-matter content,explaining respectively 6.5%–47.5%and 3.2%–18.9%of variation.These results provide a foundation for fine-mapping and cloning of QTL and for marker-assisted breeding in sweetpotato.
文摘High-density linkage maps are essential tools for genome analysis of various biological traits. Our developed compact multi-gel system, HEGS (high efficiency genome scanning) is a high-throughput and high-cost-performance electrophoresis apparatus. Using this system, a high-density (average interval 2.3 cM) map with 1 065 AFLP and 63 SSR markers was constructed from recombinant inbred lines of a japonica and indica hybrid in just two months of electrophoreses by a single person. More than 50% of the mapped AFLP markers were commonly polymorphic for several combinations between japonica and indica rice and 15% were applicable for genetically closer crosses between upland and lowland types of japonica rice. This system can be used for rapid analyses of all kinds of markers.
文摘A high-density linkage map was constructed for an F2 population derived from an Interspecific cross of cultivated allotetraploid species between Gossypium hirsutum L. and G. barbadense L. A total of 186 F2 individuals from the Interspecific cross of "CRI 36 × Hal 7124" were genotyped at I 252 polymorphic loci Including a novel marker system, target region amplification polymorphism (TRAP). The map consists of 1 097 markers, including 697 simple se- quence repeats (SSRs), 171 TRAPs, 129 sequence-related amplified polymorphisms, 98 amplified fragment length polymorphisms, and two morphological markers, and spanned 4 536.7 cM with an average genetic distance of 4.1 cM per marker. Using 45 duplicated SSR loci among chromosomes, 11 of the 13 pairs of homologous chromosomes were Identified In tetraploid cotton. This map will provide an essential resource for high resolution mapping of quantitative trait loci and molecular breeding in cotton.
基金funded by the National Basic Research Program of China (973 Project) (2010CB126000)the National High Technology Research and Development Program of China (2012AA101108)+1 种基金the National Natural Science Foundation of China (31101188)the fund project of Director (SJA1203)
文摘To introgress the good fiber quality and yield from Gossypium barbadense into a commercial Upland cotton variety, a high‐density simple sequence repeat (SSR) genetic linkage map was developed from a BC1F1 population of Gossypium hirsutum × Gossypium barbadense. The map com-prised 2,292 loci and covered 5115.16 centiMorgan (cM) of the cotton AD genome, with an average marker interval of 2.23 cM. Of the marker order for 1,577 common loci on this new map, 90.36% agrees well with the marker order on the D genome sequence genetic map. Compared with five pub-lished high‐density SSR genetic maps, 53.14% of marker loci were newly discovered in this map. Twenty‐six quantitative trait loci (QTLs) for lint percentage (LP) were identified on nine chromosomes. Nine stable or common QTLs could be used for marker‐assisted selection. Fifty percent of the QTLs were from G. barbadense and increased LP by 1.07%–2.41%. These results indicated that the map could be used for screening chromosome substitution segments from G. barbadense in the Upland cotton background, identifying QTLs or genes from G. barbadense, and further developing the gene pyramiding effect for improving fiber yield and quality.
基金supported by the Agricultural Science and Technology Innovation Program (ASTIP-TRIC01)
文摘Genetic linkage maps are essential for studies of genetics, genomic structure, and genomic evolution, and for mapping quantitative trait loci (QTL). Identification of molecular markers and construction of genetic linkage maps in tobacco (Nicotiana tabacum L.), a classical model plant and important economic crop, have remained limited. In the present study we identified a large number of single nucleotide polymorphism (SNP) markers and constructed a high-density SNP genetic map for tobacco using restriction site-associated DNA sequencing. In 1216.30 Gb of clean sequence obtained using the Illumina HiSeq 2000 sequencing platform, 99,647,735 SNPs were identified that differed between 203 sequenced plant genomes and the tobacco reference genome. Finally, 13,273 SNP markers were mapped on 24 high-density tobacco genetic linkage groups. The entire linkage map spanned 3421.80 cM, with a mean distance of 0.26 cM between adjacent markers. Compared with genetic linkage maps published previously, this version represents a considerable improvement in the number and density of markers. Seven QTL for resistance to cucumber mosaic virus (CMV) in tobacco were mapped to groups 5 and 8. This high-density genetic map is a promising tool for elucidation of the genetic bases of QTL and for molecular breeding in tobacco.
基金supported by the National Key Research and Development Program of China (2018YFD1000706/2018YFD1000700)China Agriculture Research System (CARS-10, Sweet potato)。
文摘Simple sequence repeat(SSR) markers have been proved to be a very powerful tool for quantitative trait locus(QTL) mapping, marker-assisted selection and comparative genomics research in many crop species. However, a high-density SSR genetic linkage map is still lacking because there are only a few SSR markers available in sweet potato. In this study, a total of 2545 simple sequence repeat(SSR) primer pairs, including 1215 genomic SSR(gSSR) primer pairs and 1330 BES-SSR(bSSR) primer pairs designed from the genome sequence and BAC-end sequence of sweet potato, respectively, were screened with sweet potato cultivars Luoxushu 8 and Zhengshu 20 and their randomly sampled two F1 individuals and 571 of them generated polymorphic bands. The selected 571 polymorphic SSR primer pairs and 35 EST-based SSR(eSSR) primer pairs developed at our laboratory were used to genotype 240 F1 individuals derived from a cross between Luoxushu 8 and Zhengshu 20. A double pseudo-test-cross strategy was applied for linkage analysis. The Luoxushu 8 map included 90 linkage groups with 5057 SSR markers and covered 13,299.9 cM with a marker density of 2.6 cM, and the Zhengshu 20 map contained 90 linkage groups with 3009 SSR markers and covered 11,122.9 cM with a marker density of 3.7 cM. Fifteen homologous groups were identified in both parent maps. These are the first SSR linkage maps consisting of the complete 90 linkage groups and 15 homologous groups, which are consistent with the autohexaploid nature of sweetpotato, and are also the linkage maps with the highest SSR marker density reported to date.These results provide a basis for QTL mapping, marker-assisted breeding and comparative genomics research of sweet potato.
基金Supported by the National Natural Science Foundation of China(Nos.41976146,31672641)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018SDKJ0302-4)+1 种基金the National Key R&D Program of China(No.2018YFD0900106)the Shandong Province Key Research and Development Program(No.2019GHY112008)。
文摘Pyropia yezoensis is an important macroalga because of its extensive global distribution and economic importance.Color is an important trait in the thalli of P.yezoensis,it is also an effective marker to identify the hybridization in genetic breeding.In this study,a high-density genetic linkage map was constructed based on high-throughput single nucleotide polymorphism(SNP)markers,and used for analyzing the quantitative trait loci(QTLs)of red color trait in the thalli of P.yezoensis.The conchospore undergoes meiosis to develop into an ordered tetrad,and each cell has a haploid phenotype and can grow into a single individual.Based on this theory,F1 haploid population was used as the mapping population.The map included 531 SNP markers,394.57 cM long on average distance of 0.74 cM.Collinear analysis of the genetic linkage map and the physical map indicated that the coverage between the two maps was 79.42%.Furthermore,QTL mapping identified six QTLs for the chromosomal regions associated with the red color trait of the thalli.The value of phenotypic variance explained(PVE)by an individual QTL ranged from 4.71%-63.11%.And QTL qRed-1-1,with a PVE of 63.11%,was considered the major QTL.Thus,these data may provide a platform for gene and QTL fine mapping,and marker-assisted breeding in P.yezoensis in the future.
基金financially supported by National Key R&D Program of China(Grant No.2019YFD1001401)Project of Construction of Grape Germplasm Resources Sharing Platform(Grant No.PT2029)+2 种基金Zhengzhou Major Scientific and Technological Innovation Projects(Grant No.2020CXZX0082)National Modern Agricultural Industry Technology System Construction Special Project(Grant No.CARS-29-yc-1)Special Project of Science,Technology Innovation Project of Chinese Academy of Agricultural Sciences(Grant No.CAAS-ASTIP-2019-ZFRI).
文摘Grape berry shape is an important agricultural trait.Clarifying its genetic basis is significant for cultivating grape varieties that meet market demands.However,the current study by forward genetics has not achieved in-depth results.Here,a high-density map was constructed to identify quantitative trait loci(QTLs)for berry shape.A total of 358709 polymorphic SNPs were obtained using whole-genome resequencing(WGS)based on 208 F2 individuals derived from round grape‘E42-6’and oblong grape‘Rizamat’.The 1635.65 cM high-density map was divided into 19 linkage groups with an average distance of 0.37 cM.Using this map,three significant QTLs for fruit shape index(ShI:ratio of berry length to berry width)identified over three years were mapped onto LG4 and LG5,including one stable QTL on Chr5 with the genomic region of 0.47–1.94 Mb.Combining with gene annotation and expression patterns based on RNA-seq data from two contrasting F2 individuals with round and oblong berry(their average ShI was 1.89 and 1.10,respectively)at four developmental stages,four candidate genes were selected from the above QTLs.They were mainly involved in DNA replication,cell wall modification,and phytohormone biosynthesis.Further analysis of RNA-seq data revealed that several important phytohormone synthesis and metabolic pathways were enriched based on differentially expressed genes(DEGs),which was consistent with the results of QTL mapping for genes related to plant hormone biosynthesis in the F2 population.Furthermore,a comparison of plant hormone content showed that there were significant differences in IAA and tZ content between the two contrasting F2 individuals at different developmental stages.Our findings provide molecular insights into the genetic variation in grape berry shape.Stable QTLs and their tightly linked markers offer the possibility of marker-assisted selection to accelerate berry shape breeding.
文摘Soil salinity is one of the major environmental constraints that limits crop yield and nearly 7%of the total area worldwide is affected by salinity.Salinity-induced oxidative stress causes membrane damage during germination and seedling growth.Indian mustard is a major oilseed crop in India and its production and productivity are severely affected by salt stress.Breeding Brassica cultivars for salinity tolerance by conventional means is very difficult and time-consuming.Therefore,understanding the molecular components associated with salt tolerance is needed to facilitate breeding for salt tolerance in Brassica.In this investigation,quantitative trait loci(QTLs)associated with salt tolerance were identified using F_(2:3)mapping population developed from a cross between CS52(salinity tolerant)and RH30(salinity sensitive).Parents and F_(2:3)were evaluated under controlled and salinity stress conditions for 14 morpho-physiological traits for two consecutive generations(F2 and F_(2:3)),explaining proportion of the phenotypic variance under control condition.Simple sequence repeat(SSR)markers were used for mapping studies.A genetic linkage map based on 42 simple sequence repeats(SSRs)markers was constructed covering 2298.5 cM(Haldane)to identify the loci associated with salt tolerance in Brassica juncea.Forty-one SSRs showing polymorphism in the parents(CS52 and RH30)were mapped on 8 linkage groups(C1–C8).One marker(nga 129)did not map to any of the linkage group and was excluded from mapping.Linkage group 5(C5;317.9 cM)was longest and linkage group 1(C1,255.0 cM)was shortest.Further,we identified 15 QTLs controlling 8 traits using F_(2:3)population.These QTLs explained 12.44–60.63%of the phenotypic variation with a LOD score range of 3.62–5.97.Out of these QTLs,QMI4.1 related to membrane injury showed 51.28%phenotypic variance with a LOD score of 3.34.QTL QBYP8.1 related to biological yield per plant showed 60.63%phenotypic variance at a LOD score of 3.62.The highest LOD score of 5.97 was recorded for QTL related to seed yield per plant(QSYP4.1).Major QTLs were QTL for biological yield per plant(QBYP8.1),QTL for siliquae per plant(QSP4.1),QTL for primary branches(QPB4.1),QTLs for seed per siliqua(QSS4.1,QSS4.2),QTL for seed yield per plant(QSYP4.1),and QTL for membrane injury(QMI8.1)which showed more than 50%phenotypic variance.These QTLs identified in our study need to be confirmed in other populations as well so that these can be used in marker-assisted selection and breeding to enhance salt tolerance in Brassica juncea.
基金the National Science Foundation of China,No.81800292.
文摘BACKGROUND Left atrial flutter without prior cardiac interventions is uncommon,especially dual-loop macro-reentry atrial flutter.The critical step to ablate dual-loop macroreentry atrial flutter is to identify the dominant loop and key isthmus.Although entrainment mapping could help identify the dominant loop and key isthmus,it may alter or terminate tachycardia.High-density mapping allows the generation of electroanatomic maps without altering or terminating tachycardia.CASE SUMMARY Here,we report a case of symptomatic left atrial flutter without prior intervention.In this case,high-density mapping revealed a dual-loop macro-reentry around the mitral annulus and central scar of the anterior wall.The propagation result showed that the dominant loop was around the mitral annulus,and the key isthmus was between the central scar and mitral annulus.The atrial flutter terminated successfully after ablation was performed.CONCLUSION In this case,we demonstrate that high-density mapping technology may help identify the dominant loop of dual-loop atrial flutter without entrainment,which makes ablation easier.
文摘In this study, we reported the repaid construction of a molecular marker linkage map of rice (Oryza sativa L.). An F-2 population from the cross between Annong S-1 and Nanjing 11 was used to construct a genetic linkage map of rice. Total of 142 newly screened AFLP markers and 30 anchor markers (25 SSR markers and 5 RFLP markers) were mapped on the 12 chromosomes covering 1537.4 cM of rice genome. The average interval between these markers was 9.0 cM. The total work which usually was finished in more than one year was finished within only 3 months by one person. This is the first plant AFLP map developed in China. A new thermosensitive genic male sterile gene in rice, tms5, was Egged and mapped onto chromosome 2 during the development of the linkage map.
基金This work was supported by the National 973 Projects of China (No. 2006CB102102) and the National Natural Science Foundation of China (No. 30500358).
文摘The use of markers and linkage map construction are important for QTL mapping in pigs. In this article, the genetic characteristics were studied and the linkage map was constructed in a pig resource population including 214 individuals by typing 39 microsatellite marker loci on Sus scrofa chromosomes, SSC4, SSC6, SSC7, SSC8, and SSC13. Results indicated that the average allele number, the average observed beterozygosity (Ho), and the average polymorphism information content (PIC) in F1 and F2 population were 3.2, 0.528, 0.463 and 3.2, 0.496, 0.447, respectively. In the pig resource population, the average informative meiosis (IM) was 217.4 (44-316), and the average linkage map length between the two sexes on the five chromosomes were 172.3 cM (SSC4), 168.7 cM (SSC6), 191.7 cM (SSC7), 197.3 cM (SSC8), and 178.3 cM (SSC13). The orders of microsatellite marker loci in the linkage maps were identical to, but the length was greater than, those of USDA-MARC reference map. The results of this research showed the genetic relationship and genetic characteristics of the microsatellite markers in the pig resource family population, and the linkage map could be used to for QTL mapping in the subsequent study.
基金Supported by Fund for Agricultural Science and Technology Innovation in Jiangsu Province(CX[12]1003)Science Technology Pillar Program in Jiangsu Province(BK2013303)Supper Rice Breeding and Demonstration Program of the Ministry ofAgriculture~~
文摘In this study, an RIL (recombinant inbred line) population containing 240 lines was developed by single seed descent method (SSD) based on a parent com- bination of small-grain indica cultivar Kasalath and large-grain japanica cultivar TD70 with significant differences in plant type traits, to construct the molecular genetic linkage map. Totally 838 SSR (Simple Sequence Repeat) markers were used for polymorphism screening between parents, 302 SSR markers with polymorphism were detected, with a frequency of 36.04%; 141 SSR markers with clear amplified bands and uniform distribution in the genome were finally used for genotype analysis of the RIL population. According to the experimental results, the frequency of male and female genotype in this RIL population was respectively 53% and 47%, suggesting good balance in population structure. A molecular genetic linkage map of rice was constructed by 141 markers based on a RIL population of 240 lines, with a total genetic distance of about 1 832.47 cM covering all 12 chromosomes, an average genetic distance between markers of 12.70 cM and a range of genetic distance be- tween markers of 0.43-36.11 cM, which is consistent with basic requirements of quantitative trait locus (QTL) mapping. Except for few markers on chromosomes 1 and 8, the order and location of markers is similar to the published sequences of Nipponbare. QTL analysis for the tiller angle was conducted with this RIL population of 240 lines, and results showed that three QTLs controlling tiller angle were detected on chromosome 8, 9 and 11, which were named qTA8, qTA9 and qTA11, with a contribution rate of 4.10%, 26.08% and 4.35%, respectively. To be specific, qTA9 contained Tiller Angle Controlling (TAC1) gene. The construction of this molecular genetic linkage map laid the foundation for genetic analysis and QTL mapping of various traits in the progeny of indica and japonica.
基金supported by the grants from the Natural Science Foundation of Shandong Province(No.ZR2012 CM037)the Shandong Provincial Agriculture Thorough-bred Projectthe Innovation Project of Guangxi Graduate Education(No.YCBZ2015007)
文摘Sinonovacula constricta is one of the important economic aquaculture species in China. In this study, we constructed genetic linkage maps of S. constricta based on 300 microsatellite markers derived from RAD-seq using an F1 full-sib family. The female map contained 204 microsatellites assigned to 22 linkage groups, which covered 1529.5 cM with an average interval of 10.3 cM. The male consisted of 187 microsatellites in 19 linkage groups corresponding to the haploid chromosome number(n(28)19), which spanned 1429.3 cM with an average interval of 8.7 cM. The genome coverage was approximately 83.5% and 81.4%, respectively. An integrated map was constructed according to the common markers in parental linkage groups, which had a total length of 1683.8 cM with an average interval of 7.3 cM. The genome coverage of the integrated map was approximately 86.3%. The genetic linkage map would form the foundation for further studies on the quantitative trait loci(QTL), as well as accelerating the breeding process of this species.
基金the National Natural Science Foundation of China(30571179)National 863 Program of China(2006AA0Z156,2006AA10A115)
文摘Molecular genetic maps of crop species can be used in a variety of ways in breeding and genomic research such as identification and mapping of genes and quantitative trait loci (QTLs) for morphological, physiological and economic traits of crop species. However, a comprehensive genetic linkage map for cultivated peanut has not yet been developed due to the extremely low frequency of DNA polymorphism in cultivated peanut. In this study, 142 recombinant inbred lines (RILs) derived from a cross between Yueyou 13 and Zhenzhuhei were used as mapping population in peanut (Arachis hypogaea L.). A total 652 pairs of genomic-SSR primer and 392 pairs of EST-SSR primer were used to detect the polymorphisms between the two parents. 141 SSR primer pairs, 127 genomic-SSR and 14 EST-SSR ones, which can be used to detect polymorphisms between the two parents, were selected to analyze the RILs population. Thus, a linkage genetic map which consists of 131 SSR loci in 20 linkage groups, with a coverage of 679 cM and an average of 6.12 cM of inter-maker distance was constructed. The putative functions of 12 EST-SSR markers located on the map were analyzed. Eleven showed homology to gene sequences deposited in GenBank. This is the first report of construction of a comprehensive genetic map with SSR markers in peanut (Arachis hypogaea L.). The map presented here will provide a genetic framework for mapping the qualitative and quantitative trait in peanut.
基金supported by the International Cooperation projects(2010DFB33340 and 2010DFR30620)the National Key Technology R&D Program of China from the Ministry of Science and Technology of China(2013BAD01B03-18)+1 种基金the National Natural Science Foundation of China(31371695)supported by the Agricultural Science and Technology Innovation Program(ASTIP)in CAAS
文摘Simple sequence repeat(SSR)markers have previously been applied to linkage mapping of the pea(Pisum sativum L.)genome.However,the transferability of existing loci to the molecularly distinct Chinese winter pea gene pool was limited.A novel set of pea SSR markers was accordingly developed.Together with existing SSR sequences,the genome of the G0003973(winter hardy)×G0005527(cold sensitive)cross was mapped using 190 F2individuals.In total,157 SSR markers were placed in 11 linkage groups with an average interval of 9.7 cM and total coverage of 1518 cM.The novel markers and genetic linkage map will be useful for marker-assisted pea breeding.
基金supported by the National High-Tech R&D Program of China(2006AA10Z183,2006AA10A107)
文摘In this study,a linkage genetic map was constructed using a F2 population derived from a cross between a elite maize inbred,B73,and its progenitor,Teosinte(Z.mays ssp.mexicana),through 205 simple sequence repeat(SSR) markers and one morphological marker.By Mapmaker 3.0,polymorphic markers were clustered into 10 groups,covering 10 chromosomes of maizexteosinte,with a total length of 2 002.4 cM and an average interval of 9.7 cM.Genotyping errors were detected using R/QTL(LOD=2.0) in 109 markers referring to 176 individuals,distributed across all 10 chromosomes with a ratio 1.2%.Projected error loci were re-run and 304 out of the 460 were confirmed as errors and replaced.A new linkage map was constructed,in which markers maintained the same order but the total map length decreased to 1 947.8 cM,with an average interval of 9.4 cM between markers.In total,25.2%(P0.05) markers were identified to have segregation distortion,in which 34.6% deviated towards the pollination parent(B73),30.8% deviated towards Teosinte,32.7% deviated towards heterozygote and 1.9% deviated towards both parents.This map was also compared with published maizexteosinte and maize IBM map.
基金financially supported by the National Natural Science Foundation of China (91435204, 31271710)the National 863 Program of China (2012AA10A309)the Program of Conservation and Sustainable Utilization of Wild Relatives of Crops by the Ministry of Agriculture of China (201003021)
文摘The construction of high density genetic linkage map provides a powerful tool to detect and map quantitative trait loci(QTLs) controlling agronomically important traits. In this study, simple sequence repeat(SSR) markers and Illumina 9K i Select single nucleotide polymorphism(SNP) genechip were employed to construct one genetic linkage map of common wheat(Triticum aestivum L.) using 191 recombinant inbred lines(RILs) derived from cross Yu 8679×Jing 411. This map included 1 901 SNP loci and 178 SSR loci, covering 1 659.9 c M and 1 000 marker bins, with an average interval distance of 1.66 c M. A, B and D genomes covered 719.1, 703.5 and 237.3 c M, with an average interval distance of 1.66, 1.45 and 2.9 c M, respectively. Notably, the genetic linkage map covered 20 chromosomes, with the exception of chromosome 5D. Bioinformatics analysis revealed that 1 754(92.27%) of 1 901 mapped SNP loci could be aligned to 1 215 distinct wheat unigenes, among which 1 184(97.4%) were located on o ne single chromosome, and the rest 31(2.6%) were located on 2 to 3 chromosomes. By performing in silico comparison, 214 chromosome deletion bin-mapped expressed sequence tags(ESTs), 1 043 Brachypodium genes and 1 033 rice genes were further added onto the genetic linkage map. This map not only integrated genetic and physical maps, SSR and SNP loci, respectively, but also provided the information of Brachypodium and rice genes corresponding to 1 754 SNP loci. Therefore, it will be a useful tool for comparative genomics analysis, fine mapping of QTL/gene controlling agronomically important traits and marker-assisted selection breeding in wheat.
基金financially supported by the National Science Foundation for Young Scientists of China(31701421)the National Key Research and Development Program of China(2016YFE0108600)+2 种基金the China Agriculture Research System(CARS-3-1-11)the Genetically Modified Organisms Breeding Major Project(2016ZX08002001)the Key Project of Science and Technology of Tibetan Autonomous Region,China(XZ201702NB15)
文摘Wheat crops in China are constantly challenged by stripe rust. Deployment of cultivars with diverse resistances is the best strategy to control the disease. A recombinant inbred line(RIL) population derived from a cross between the resistant cultivar Chakwal 86 and susceptible landrace Mingxian 169 was studied in multiple environments to examine the underlying genetics and to identify quantitative trait loci(QTL) for stripe rust resistance.One hundred and twenty-eight RILs were genotyped with wheat 35 K SNP array and a genome-wide linkage map with 1480 polymorphic SNP markers, or bins, was constructed.Two major QTL on chromosomes 1BL and 3BS, and one minor QTL on 6BS had significant effects in reducing stripe rust severity. The QTL were validated using composite interval mapping(CIM) and inclusive composite interval mapping(ICIM). These methods explained59.0%–74.1% of the phenotype variation in disease response. The QTL on chromosome 1 BL was confirmed to be Yr29/Lr46 and the one on 3BS was the resistance allele identified in CIMMYT germplasm but was not Yr30/Sr2. The QTL on 6BS probably corresponded to previously known QTL. RILs with combined QTL were more resistant than those with single or no QTL. Kompetitive allele-specific PCR(KASP) assays for the QTL with largest effect QTL on chromosome 3BS were performed on a subset of RILs and 150 unrelated wheat lines. The QTL on 3BS with its linked KASP markers can be used in marker-assisted selection to improve stripe rust resistance in breeding programs.
文摘Wheat powdery mildew(Blumeria graminis f.sp.tritici, Bgt) is a disease of increasing importance globally due to the adoption of high yielding varieties and modern sustainable farming technologies.Growing resistant cultivars is a preferred approach to managing this disease, and novel powdery mildew resistance genes are urgently needed for new cultivar development.A genome-wide association study was performed on a panel of 1292 wheat landraces and historical cultivars using 5011 single nucleotide polymorphism(SNP)markers.The association panel was evaluated for reactions to three Bgt inoculants, OKS(14)-B-3-1, OKS(14)-C-2-1, and Bgt15.Linkage disequilibrum(LD) analysis indicated that genome-wide LD decayed to 0.1 at 23 Mb, and population structure analysis revealed seven subgroups in the panel.Association analysis using a mixed linear model(MLM) identified three loci for powdery mildew resistance on chromosome 2 B, designated QPm.stars-2BL1,QPm.stars-2BL2, and QPm.stars-2BL3.To evaluate the efficacy of GWAS in gene discovery,QPm.stars-2BL2 was validated using F2 and F2:3 populations derived from PI420646 × OK1059060-126135-3.Linkage analysis delimited the powdery mildew resistance gene in PI 420646 to an interval where QPm.stars-2BL2 was located, lending credence to the GWAS results.QPm.stars-2BL1 and QPm.stars-2BL3, which were associated with four SNPs located at 457.7–461.7 Mb and two SNPs located at 696.6–715.9 Mb in the Chinese Spring reference IWGSC RefSeq v1.0, respectively, are likely novel loci for powdery mildew resistance and can be used in wheat breeding to improve powdery mildew resistance.