期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Two-Phase Genetic Algorithm Applied in the Optimization of Multi-Modal Function 被引量:5
1
作者 Huang Yu-zhen, Kang Li-shan,Zhou Ai-minState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期259-264,共6页
This paper presents a two-phase genetic algorithm (TPGA) based on the multi- parent genetic algorithm (MPGA). Through analysis we find MPGA will lead the population' s evol vement to diversity or convergence accor... This paper presents a two-phase genetic algorithm (TPGA) based on the multi- parent genetic algorithm (MPGA). Through analysis we find MPGA will lead the population' s evol vement to diversity or convergence according to the population size and the crossover size, so we make it run in different forms during the global and local optimization phases and then forms TPGA. The experiment results show that TPGA is very efficient for the optimization of low-dimension multi-modal functions, usually we can obtain all the global optimal solutions. 展开更多
关键词 optimization of multi-modal function genetic algorithm global optimization local optimization
下载PDF
A Two-Level Subspace Evolutionary Algorithm for Solving Multi-Modal Function Optimization Problems 被引量:3
2
作者 Li Yan, Kang ZhuoComputation Center, Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期249-252,共4页
In this paper, a new algorithm for solving multi-modal function optimization problems-two-level subspace evolutionary algorithm is proposed. In the first level, the improved GT algorithm is used to do global recombina... In this paper, a new algorithm for solving multi-modal function optimization problems-two-level subspace evolutionary algorithm is proposed. In the first level, the improved GT algorithm is used to do global recombination search so that the whole population can be separated into several niches according to the position of solutions; then, in the second level, the niche evolutionary strategy is used for local search in the subspaces gotten in the first level till solutions of the problem are found. The new algorithm has been tested on some hard problems and some good results are obtained. 展开更多
关键词 multi-modal function subspace search evolutionary algorithm
下载PDF
Elitism-based immune genetic algorithm and its application to optimization of complex multi-modal functions 被引量:4
3
作者 谭冠政 周代明 +1 位作者 江斌 DIOUBATE Mamady I 《Journal of Central South University of Technology》 EI 2008年第6期845-852,共8页
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s... A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism. 展开更多
关键词 immune genetic algorithm multi-modal function optimization evolutionary computation elitist selection elitist crossover
下载PDF
Regularized automatic frequency response function acquisition of a milling robot operating in a high-dimensional workspace
4
作者 LUO WenLong TANG XiaoWei +5 位作者 MA Tao GUO QiuShuang XU YanYan YUAN Xing ZHANG Lei MAO XinYong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第6期1783-1797,共15页
Because robotic milling has become an important means for machining significant large parts,obtaining the structural frequency response function(FRF)of a milling robot is an important basis for machining process optim... Because robotic milling has become an important means for machining significant large parts,obtaining the structural frequency response function(FRF)of a milling robot is an important basis for machining process optimization.However,because of its articulated serial structure,a milling robot has an enormous number of operating postures,and its dynamics are affected by the motion state.To accurately obtain the FRF in the operating state of a milling robot,this paper proposes a method based on the structural modification concept.Unlike the traditional excitation method,the proposed method uses robot joint motion excitation instead of hammering excitation to realize automation.To address the problem of the lack of information brought by motion excitation,which leads to inaccurate FRF amplitudes,this paper derives the milling robot regularization theory based on the sensitivity of structural modification,establishes the modal regularization factor,and calibrates the FRF amplitude.Compared to the commonly used manual hammering experiments,the proposed method has high accuracy and reliability when the milling robot is in different postures.Because the measurement can be performed directly and automatically in the operation state,and the problem of inaccurate amplitudes is solved,the proposed method provides a basis for optimizing the machining posture of a milling robot and improving machining efficiency. 展开更多
关键词 milling robot structural dynamics frequency response function automatic identification modal regularization factor high-dimensional workspace
原文传递
Chip-Based High-Dimensional Optical Neural Network 被引量:5
5
作者 Xinyu Wang Peng Xie +1 位作者 Bohan Chen Xingcai Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期570-578,共9页
Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high paralleliz... Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing. 展开更多
关键词 Integrated optics Optical neural network high-dimension Mach-Zehnder interferometer Nonlinear activation function Parallel high-capacity analog computing
下载PDF
Dimensionality Reduction of High-Dimensional Highly Correlated Multivariate Grapevine Dataset
6
作者 Uday Kant Jha Peter Bajorski +3 位作者 Ernest Fokoue Justine Vanden Heuvel Jan van Aardt Grant Anderson 《Open Journal of Statistics》 2017年第4期702-717,共16页
Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripeni... Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripening rate, water status, nutrient levels, and disease risk. In this paper, we implement imaging spectroscopy (hyperspectral) reflectance data, for the reflective 330 - 2510 nm wavelength region (986 total spectral bands), to assess vineyard nutrient status;this constitutes a high dimensional dataset with a covariance matrix that is ill-conditioned. The identification of the variables (wavelength bands) that contribute useful information for nutrient assessment and prediction, plays a pivotal role in multivariate statistical modeling. In recent years, researchers have successfully developed many continuous, nearly unbiased, sparse and accurate variable selection methods to overcome this problem. This paper compares four regularized and one functional regression methods: Elastic Net, Multi-Step Adaptive Elastic Net, Minimax Concave Penalty, iterative Sure Independence Screening, and Functional Data Analysis for wavelength variable selection. Thereafter, the predictive performance of these regularized sparse models is enhanced using the stepwise regression. This comparative study of regression methods using a high-dimensional and highly correlated grapevine hyperspectral dataset revealed that the performance of Elastic Net for variable selection yields the best predictive ability. 展开更多
关键词 high-dimensional DATA MULTI-STEP Adaptive Elastic Net MINIMAX CONCAVE Penalty Sure Independence Screening functional DATA Analysis
下载PDF
Functional imaging and endoscopy 被引量:3
7
作者 Jian-Guo Zhang Hai-Feng Liu 《World Journal of Gastroenterology》 SCIE CAS CSCD 2011年第38期4277-4282,共6页
The emergence of endoscopy for the diagnosis of gastrointestinal diseases and the treatment of gastrointestinal diseases has brought great changes.The mere observation of anatomy with the imaging mode using modern end... The emergence of endoscopy for the diagnosis of gastrointestinal diseases and the treatment of gastrointestinal diseases has brought great changes.The mere observation of anatomy with the imaging mode using modern endoscopy has played a significant role in this regard.However,increasing numbers of endoscopies have exposed additional deficiencies and defects such as anatomically similar diseases.Endoscopy can be used to examine lesions that are difficult to identify and diagnose.Early disease detection requires that substantive changes in biological function should be observed,but in the absence of marked morphological changes,endoscopic detection and diagnosis are difficult.Disease detection requires not only anatomic but also functional imaging to achieve a comprehensive interpretation and understanding.Therefore,we must ask if endoscopic examination can be integrated with both anatomic imaging and functional imaging.In recent years,as molecular biology and medical imaging technology have further developed,more functional imaging methods have emerged.This paper is a review of the literature related to endoscopic optical imaging methods in the hopes of initiating integration of functional imaging and anatomical imaging to yield a new and more effective type of endoscopy. 展开更多
关键词 ENDOSCOPY functional imaging multi-modal imaging Optical coherence tomography Fluores-cence molecular imaging Photoacoustic tomography Cerenkov luminescence tomography
下载PDF
Steady-state probability density function in wave turbulence under large volume limit
8
作者 Yeontaek Choi Sang Gyu Jo 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第5期139-145,共7页
We investigate the possibility for two-mode probability density function (PDF) to have a non-zero flux steady state solution. We take the large volume limit so that the space of modes becomes continuous. It is shown... We investigate the possibility for two-mode probability density function (PDF) to have a non-zero flux steady state solution. We take the large volume limit so that the space of modes becomes continuous. It is shown that in this limit all the steady-state twoor higher-mode PDFs are the product of one-mode PDFs. The flux of this steady-state solution turns out to be zero for any finite mode PDF. 展开更多
关键词 wave turbulence probability flux multi-mode probability density function Larguerreequation
下载PDF
Differentially private high-dimensional data publication via grouping and truncating techniques 被引量:4
9
作者 Ning WANG Yu GU +2 位作者 Jia XU Fangfang LI Ge YU 《Frontiers of Computer Science》 SCIE EI CSCD 2019年第2期382-395,共14页
The count of one column for high-dimensional datasets, i.e., the number of records containing this column, has been widely used in nuinerous applications such as analyzing popular spots based on check-in location info... The count of one column for high-dimensional datasets, i.e., the number of records containing this column, has been widely used in nuinerous applications such as analyzing popular spots based on check-in location information and mining valuable items from shopping records. However, this poses a privacy threat when directly publishing this information. Differential privacy (DP), as a notable paradigm for strong privacy guarantees, is thereby adopted to publish all column counts. Prior studies have verified that truncating records or grouping columns can effectively improve the accuracy of published results. To leverage the advantages of the two techniques, we combine these studies to further boost the accuracy of published results. However, the traditional penalty function, which measures the error imported by a given pair of parameters including truncating length and group size, is so sensitive that the derived parameters deviate from the optimal parameters significantly. To output preferable parameters, we first design a smart penalty function that is less sensitive than the traditional function. Moreover, a two-phase selection method is proposed to compute these parameters efficiently, together with the improvement in accuracy. Extensive experiments on a broad spectrum of real-world datasets validate the effectiveness of our proposals. 展开更多
关键词 differential privacy high-dimensional data TRUNCATION optimization GROUPING PENALTY function
原文传递
A novel particle swarm optimizer without velocity:Simplex-PSO 被引量:5
10
作者 肖宏峰 谭冠政 《Journal of Central South University》 SCIE EI CAS 2010年第2期349-356,共8页
A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its referenc... A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its reference objectives were the best particle and the centroid of all particles except the best particle.The convergence theorems of linear time-varying discrete system proved that simplex-PSO is of consistent asymptotic convergence.In order to reduce the probability of trapping into a local optimal value,an extremum mutation was introduced into simplex-PSO and simplex-PSO-t(simplex-PSO with turbulence) was devised.Several experiments were carried out to verify the validity of simplex-PSO and simplex-PSO-t,and the experimental results confirmed the conclusions:(1) simplex-PSO-t can optimize high-dimension functions with 200-dimensionality;(2) compared PSO with chaos PSO(CPSO),the best optimum index increases by a factor of 1×102-1×104. 展开更多
关键词 Nelder-Mead simplex method particle swarm optimizer high-dimension function optimization convergence analysis
下载PDF
Research on Modified Shifting Balance Genetic Algorithms 被引量:1
11
作者 MA Hong-mei GONG Dun-wei 《Journal of China University of Mining and Technology》 EI 2007年第2期188-192,共5页
The increasing overlap of core and colony populations during the anaphase of evolution may limit the performance of shifting balance genetic algorithms. To decrease such overlapping,so as to increase the local search ... The increasing overlap of core and colony populations during the anaphase of evolution may limit the performance of shifting balance genetic algorithms. To decrease such overlapping,so as to increase the local search capability of the core population,the sub-space method was used to generate uniformly distributed initial colony populations over the decision variable space. The core population was also dynamically divided,making simultaneous searching in several local spaces possible. The algorithm proposed in this paper was compared to the original one by searching for the optimum of a complicated multi-modal function. The results indicate that the solutions obtained by the modified algorithm are better than those of the original algorithm. 展开更多
关键词 genetic algorithms shifting balance genetic algorithms small spaces dynamic partition multi-modal function
下载PDF
Can multi-modal neuroimaging evidence from hippocampus provide biomarkers for the progression of amnestic mild cognitive impairment? 被引量:4
12
作者 Jiu Chen Zhijun Zhang Shijiang Li 《Neuroscience Bulletin》 SCIE CAS CSCD 2015年第1期128-140,共13页
Impaired structure and function of the hippocampus is a valuable predictor of progression from amnestic mild cognitive impairment(a MCI) to Alzheimer's disease(AD). As a part of the medial temporal lobe memory sy... Impaired structure and function of the hippocampus is a valuable predictor of progression from amnestic mild cognitive impairment(a MCI) to Alzheimer's disease(AD). As a part of the medial temporal lobe memory system,the hippocampus is one of the brain regions affected earliest by AD neuropathology,and shows progressive degeneration as a MCI progresses to AD. Currently,no validated biomarkers can precisely predict the conversion from a MCI to AD. Therefore,there is a great need of sensitive tools for the early detection of AD progression. In this review,we summarize the specifi c structural and functional changes in the hippocampus from recent a MCI studies using neurophysiological and neuroimaging data. We suggest that a combination of advanced multi-modal neuroimaging measures in discovering biomarkers will provide more precise and sensitive measures of hippocampal changes than using only one of them. These will potentially affect early diagnosis and disease-modifying treatments. We propose a new sequential and progressive framework in which the impairment spreads from the integrity of fibers to volume and then to function in hippocampal subregions. Meanwhile,this is likely to be accompanied by progressive impairment of behavioral and neuropsychological performance in the progression of a MCI to AD. 展开更多
关键词 Alzheimer's disease amnestic mild cognitive impairment hippocampus episodic memory functional magnetic resonance imaging structural magnetic resonance imaging diffusion tensor imaging multi-modal MRI biomarker
原文传递
ARTIFICIAL IMMUNE ALGORITHM OF MULTICELLULAR GROUP AND ITS CONVERGENCE
13
作者 罗印升 李人厚 张维玺 《Journal of Pharmaceutical Analysis》 SCIE CAS 2005年第2期23-27,共5页
Objective To find out more extrema simultaneously including global optimum and multiple local optima existed in multi-modal functions. Methods Germinal center is the generator and selector of high-affinity B cells, a ... Objective To find out more extrema simultaneously including global optimum and multiple local optima existed in multi-modal functions. Methods Germinal center is the generator and selector of high-affinity B cells, a multicellular group's artificial immune algorithm was proposed based on the germinal center reaction mechanism of natural immune systems. Main steps of the algorithm were given, including hyper-mutation, selection, memory, similarity suppression and recruitment of B cells and the convergence of it was proved. Results The algorithm has been tested to optimize various multi-modal functions, and the simulation results show that the artificial immune algorithm proposed here can find multiple extremum of these functions with lower computational cost. Conclusion The algorithm is valid and can converge on the satisfactory solution set D with probability 1 and approach to global solution and many local optimal solutions existed. 展开更多
关键词 germinal center reaction B cell artificial immune algorithm multi-modal function
下载PDF
Fuzzy Genetic Sharing for Dynamic Optimization
14
作者 Khalid Jebari Abdelaziz Bouroumi Aziz Ettouhami 《International Journal of Automation and computing》 EI 2012年第6期616-626,共11页
Recently,genetic algorithms(GAs) have been applied to multi-modal dynamic optimization(MDO).In this kind of optimization,an algorithm is required not only to find the multiple optimal solutions but also to locate a dy... Recently,genetic algorithms(GAs) have been applied to multi-modal dynamic optimization(MDO).In this kind of optimization,an algorithm is required not only to find the multiple optimal solutions but also to locate a dynamically changing optimum.Our fuzzy genetic sharing(FGS) approach is based on a novel genetic algorithm with dynamic niche sharing(GADNS).FGS finds the optimal solutions,while maintaining the diversity of the population.For this,FGS uses several strategies.First,an unsupervised fuzzy clustering method is used to track multiple optima and perform GADNS.Second,a modified tournament selection is used to control selection pressure.Third,a novel mutation with an adaptive mutation rate is used to locate unexplored search areas.The effectiveness of FGS in dynamic environments is demonstrated using the generalized dynamic benchmark generator(GDBG). 展开更多
关键词 Genetic algorithms unsupervised learning fuzzy clustering dynamic optimization evolutionary algorithms dynamic niche sharing Hill s diversity index multi-modal function optimization.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部