期刊文献+
共找到54,850篇文章
< 1 2 250 >
每页显示 20 50 100
Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems
1
作者 Chunlei Ruan Cengceng Dong +2 位作者 Zeyue Zhang Boyu Chen Zhijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2707-2728,共22页
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t... Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions. 展开更多
关键词 Peridynamic differential operator finite difference method STABILITY transient heat conduction problem
下载PDF
Effects of atrial septal defects on the cardiac conduction system
2
作者 Jin-Hua Kang Hong-Yan Wu Wen-Jie Long 《World Journal of Clinical Cases》 SCIE 2024年第35期6770-6774,共5页
The case report presented in this edition by Mu et al.The report presents a case of atrial septal defect(ASD)associated with electrocardiographic changes,noting that the crochetage sign resolved after Selective His Bu... The case report presented in this edition by Mu et al.The report presents a case of atrial septal defect(ASD)associated with electrocardiographic changes,noting that the crochetage sign resolved after Selective His Bundle Pacing(S-HBP)without requiring surgical closure.The mechanisms behind the appearance and resolution of the crochetage sign remain unclear.The authors observed the dis-appearance of the crochetage sign post-S-HBP,suggesting a possible correlation between these specific R waves and the cardiac conduction system.This editorial aims to explore various types of ASD and their relationship with the cardiac con-duction system,highlighting the diagnostic significance of the crochetage sign in ASD. 展开更多
关键词 Atrial septal defects Cardiac conduction system Crochetage sign ELECTROCARDIOGRAM Selective His bundle pacing
下载PDF
Variational Approach to 2D and 3D Heat Conduction Modeling
3
作者 Slavko Đurić Ivan Aranđelović Milan Milotić 《Journal of Applied Mathematics and Physics》 2024年第4期1383-1400,共18页
The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximat... The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximate solution of the generalized (hyperbolic) 2D and 3D equation for the considered plate and cube is also proposed. Approximate solutions were obtained by applying calculus of variations and Euler-Lagrange equations. In order to verify the correctness of the proposed approximate solutions, they were compared with the exact solutions of parabolic and hyperbolic equations. The paper also presents the research on the influence of time parameters τ as well as the relaxation times τ ∗ to the variation of the profile of the temperature field for the considered aluminum plate and cube. 展开更多
关键词 Classical Equation of Heat conduction Generalized Equation of Heat conduction Calculus of Variations Approximate Solution
下载PDF
Axonal Conduction Velocity: A Computer Study
4
作者 Arthur D. Snider Aman Chawla Salvatore D. Morgera 《Journal of Applied Mathematics and Physics》 2024年第1期60-71,共12页
This paper derives rigorous statements concerning the propagation velocity of action potentials in axons. The authors use the Green’s function approach to approximate the action potential and find a relation between ... This paper derives rigorous statements concerning the propagation velocity of action potentials in axons. The authors use the Green’s function approach to approximate the action potential and find a relation between conduction velocity and the impulse profile. Computer simulations are used to bolster the analysis. 展开更多
关键词 NEURON AXON Action Potential conduction Velocity INTERNODE
下载PDF
Development and Optimization of Universal Bone Conduction Hearing Spectacles
5
作者 Johannes Burkart Mona Kirstin Fehling +2 位作者 Saadu Adamu Raúl Pérez Ramos Daniel Häussler 《International Journal of Otolaryngology and Head & Neck Surgery》 2024年第5期344-358,共15页
Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. ... Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. These devices can be surgically implanted or attached using adhesive plates, dental sticks, elastic headbands, or bone conduction spectacles. Optimal fitting of bone conduction spectacles requires appropriate frame selection and contact pressure in the temporal and mastoid areas. The ANSI S3.6 and DIN EN ISO 389-3 standards recommend a contact area of approximately 1.75 cm2 and a maximum force of 5.4 N for effective sound transmission and comfort. Methods: This study aimed to evaluate the technical fit and mechanical stability of universal bone conduction hearing spectacles compared to established systems. A Sen-Pressure 02 thin-film sensor connected to an Arduino Uno R3 board measured contact force in the temporal and mastoid areas. Several BCHDs were tested, including the Bruckhoff la belle BC D50/70, Radioear B71 headset, Radioear B71 elastic headband, Cochlear Baha SoundArc M, and Cochlear Baha elastic headband, on a PVC artificial head, with data analyzed using ANOVA and LSD post hoc tests. Results: The la belle BC D50/70 spectacles showed comparable contact force to established BCHDs, ensuring adequate sound transmission and comfort. Significant differences were observed between the systems, with the Radioear B71 headset exhibiting the highest forces. The la belle BC D50/70 had similar forces to the Radioear B71 elastic headband. Conclusion: The la belle BC D50/70 universal bone conduction hearing spectacles are a technically equivalent alternative to established BCHDs, maintaining pressure below 5.4 N. Future research should explore the impact of different contact forces on performance and comfort, and the integration of force control in modified spectacles. This study indicates that the la belle BC D50/70 is a viable alternative that meets audiological practice requirements. 展开更多
关键词 Bone conduction Hearing Devices (BCHD) Universal Bone conduction Hearing Spec-Tacles Non-Implantable Hearing Aids Contact Pressure Optimization
下载PDF
Variational Approach to Heat Conduction Modeling
6
作者 Slavko Đurić Ivan Aranđelović Milan Milotić 《Journal of Applied Mathematics and Physics》 2024年第1期234-248,共15页
It is known that Fourier’s heat equation, which is parabolic, implies an infinite velocity propagation, or, in other words, that the mechanism of heat conduction is established instantaneously under all conditions. T... It is known that Fourier’s heat equation, which is parabolic, implies an infinite velocity propagation, or, in other words, that the mechanism of heat conduction is established instantaneously under all conditions. This is unacceptable on physical grounds in spite of the fact that Fourier’s law agrees well with experiment. However, discrepancies are likely to occur when extremely short distances or extremely short time intervals are considered, as they must in some modern problems of aero-thermodynamics. Cattaneo and independently Vernotte proved that such process can be described by Heaviside’s telegraph equation. This paper shows that this fact can be derived using calculus of variations, by application of the Euler-Lagrange equation. So, we proved that the equation of heat conduction with finite velocity propagation of the thermal disturbance can be obtained as a solution to one variational problem. 展开更多
关键词 Telegraph Equation Heat Equation Heat conduction Calculus of Variations
下载PDF
Galerkin-based quasi-smooth manifold element(QSME)method for anisotropic heat conduction problems in composites with complex geometry
7
作者 Pan WANG Xiangcheng HAN +2 位作者 Weibin WEN Baolin WANG Jun LIANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期137-154,共18页
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ... The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations. 展开更多
关键词 anisotropic heat conduction quasi-smooth manifold element(QSME) composite with complex geometry numerical simulation finite element method(FEM)
下载PDF
Sterilization Effect of Cooking Process for Guilin Rice Noodles Based on Heat Conduction Model
8
作者 Wenyu Wu Fanglei Zou +1 位作者 Xiaojun Sun Liang Du 《Journal of Modern Physics》 2024年第8期1300-1312,共13页
Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effec... Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans. 展开更多
关键词 Guilin Rice Noodles Heat conduction Model Temperature Distribution Function Effective Sterilization
下载PDF
Lightweight diamond/Cu interface tuning for outstanding heat conduction 被引量:4
9
作者 Wenjie Dou Congxu Zhu +6 位作者 Xiwang Wu Xun Yang Wenjun Fa Yange Zhang Junfeng Tong Guangshan Zhu Zhi Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期229-240,共12页
With rapid developments in the field of very large-scale integrated circuits,heat dissipation has emerged as a significant factor that restricts the high-density integration of chips.Due to their high thermal conducti... With rapid developments in the field of very large-scale integrated circuits,heat dissipation has emerged as a significant factor that restricts the high-density integration of chips.Due to their high thermal conductivity and low thermal expansion coefficient,diamond/Cu composites have attracted considerable attention as a promising thermal management material.In this study,a surface tungsten carbide gradient layer coating of diamond particles has been realized using comprehensive magnetron sputtering technology and a heat treatment process.Diamond/Cu composites were prepared using high-temperature and high-pressure technology.The results show that,by adjusting the heat treatment process,tungsten carbide and di-tungsten carbide are generated by an in situ reaction at the tungsten–diamond interface,and W–WC–W_(2)C gradient layer-coated diamond particles were obtained.The diamond/Cu composites were sintered by high-temperature and high-pressure technology,and the density of surface-modified diamond/Cu composites was less than 4 g cm^(-3).The W–WC–W_(2)C@diamond/Cu composites have a thermal diffusivity as high as 331 mm^(2)s^(-1),and their thermal expansion coefficient is as low as 1.76×10^(-6)K^(-1).The interface coherent structure of the gradient layer-coated diamond/copper composite can effectively improve the interface heat transport efficiency. 展开更多
关键词 coherent interface diamond composite heat conduction surface modification
下载PDF
Cerium Methacrylate Assisted Preparation of Highly Thermally Conductive and Anticorrosive Multifunctional Coatings for Heat Conduction Metals Protection 被引量:1
10
作者 Fei Xu Peng Ye +7 位作者 Jianwen Peng Haolei Geng Yexiang Cui Di Bao Renjie Lu Hongyu Zhu Yanji Zhu Huaiyuan Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期172-184,共13页
Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive... Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive and urgent need while a difficult task.Here we report a multifunctional epoxy composite coating(F-CB/CEP)by synthesizing cerium methacrylate and ingeniously using it as a novel curing agent with corrosion inhibit for epoxy resin and modifier for boron nitride through"cation-π"interaction.The prepared F-CB/CEP coating presents a high TC of 4.29 W m^(−1)K^(−1),which is much higher than other reported anti-corrosion polymer coatings and thereby endowing metal materials coated by this coating with outstanding thermal management performance compared with those coated by pure epoxy coating.Meanwhile,the low-frequency impedance remains at 5.1×10^(11)Ωcm^(2)even after 181 days of immersion in 3.5 wt%NaCl solution.Besides,the coating also exhibits well hydrophobicity,self-cleaning properties,temperature resistance and adhesion.This work provides valuable insights for the preparation of high-performance composite coatings with potential to be used as advanced multifunctional thermal management materials,especially for heat conduction metals protection. 展开更多
关键词 Epoxy coatings Thermal conductivity ANTI-CORROSION HYDROPHOBICITY Cerium methacrylate
下载PDF
Optimized CeO_(2) Nanowires with Rich Surface Oxygen Vacancies Enable Fast Li-Ion Conduction in Composite Polymer Electrolytes 被引量:2
11
作者 Lu Gao Nan Wu +7 位作者 Nanping Deng Zhenchao Li Jianxin Li Yong Che Bowen Cheng Weimin Kang Ruiping Liu Yutao Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期218-223,共6页
Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)t... Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities. 展开更多
关键词 composite polymer electrolytes Gd-doped CeO_(2)nanowires Li-ion conduction oxygen vacancies surface interaction
下载PDF
Morphological evolution and flow conduction characteristics of fracture channels in fractured sandstone under cyclic loading and unloading 被引量:1
12
作者 Quanle Zou Zihan Chen +4 位作者 Jinfei Zhan Chunmei Chen Shikang Gao Fanjie Kong Xiaofeng Xia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1527-1540,共14页
In coal mining,rock strata are fractured under cyclic loading and unloading to form fracture channels.Fracture channels are the main flow narrows for gas.Therefore,expounding the flow conductivity of fracture channels... In coal mining,rock strata are fractured under cyclic loading and unloading to form fracture channels.Fracture channels are the main flow narrows for gas.Therefore,expounding the flow conductivity of fracture channels in rocks on fluids is significant for gas flow in rock strata.In this regard,graded incremental cyclic loading and unloading experiments were conducted on sandstones with different initial stress levels.Then,the three-dimensional models for fracture channels in sandstones were established.Finally,the fracture channel percentages were used to reflect the flow conductivity of fracture channels.The study revealed how the particle size distribution of fractured sandstone affects the formation and expansion of fracture channels.It was found that a smaller proportion of large blocks and a higher proportion of small blocks after sandstone fails contribute more to the formation of fracture channels.The proportion of fracture channels in fractured rock can indicate the flow conductivity of those channels.When the proportion of fracture channels varies gently,fluids flow evenly through those channels.However,if the proportion of fracture channels varies significantly,it can greatly affect the flow rate of fluids.The research results contribute to revealing the morphological evolution and flow conductivity of fracture channels in sandstone and then provide a theoretical basis for clarifying the gas flow pattern in the rock strata of coal mines. 展开更多
关键词 CT imaging Flow conductivity Three-dimensional reconstruction Proportion of fracture channels Cyclic loading and unloading
下载PDF
Highly Thermoconductive,Strong Graphene‑Based Composite Films by Eliminating Nanosheets Wrinkles 被引量:2
13
作者 Guang Xiao Hao Li +2 位作者 Zhizhou Yu Haoting Niu Yagang Yao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期328-340,共13页
Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macros... Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites,capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying,which greatly reduces the thermal conductivity of the composites.Herein,graphene nanosheets/aramid nanofiber(GNS/ANF)composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds andπ-πinteractions.The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets,thereby creating a fast in-plane heat transfer channel.The composite films(GNS/ANF-60 wt%)with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity(146 W m^(−1)K^(−1))and tensile strength(207 MPa).The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones,showing promising applications in the thermal management of high-power electronic devices. 展开更多
关键词 GRAPHENE Aramid nanofiber Wrinkles elimination In-plane stretching Thermal conductivity
下载PDF
Evolution of Superconducting-Transition Temperature with Superfluid Density and Conductivity in Pressurized Cuprate Superconductors 被引量:1
14
作者 赵金瑜 蔡树 +15 位作者 陈逸雯 顾根大 闫宏涛 郭静 韩金宇 王鹏玉 周亚洲 李延春 李晓东 任治安 吴奇 周兴江 丁阳 向涛 毛河光 孙力玲 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期110-117,共8页
What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law kn... What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law known as Homes'law,there is a growing consensus in the community that the Tc value of the cuprate superconductors is closely linked to the superfluid density(ρ_(s))of its ground state and the conductivity(σ)of its normal state.However,all the data supporting this empirical law(ρ_(s)=AσT_(c))have been obtained from the ambientpressure superconductors.In this study,we present the first high-pressure results about the connection of the quantities of ρ_(s) and σ with T_(c),through the studies on the Bi_(1.74)Pb_(0.38)Sr_(1.88)CuO_(6+δ)and Bi_(2)Sr_(2)CaCu_(2)O_(8+δ),in which the value of their high-pressure resistivity(ρ=1/σ)is achieved by adopting our newly established method,while the quantity ofρs is extracted using Homes'law.We highlight that the Tc values are strongly linked to the joint response factors of magnetic field and electric field,i.e.,ρ_(s) and σ,respectively,implying that the physics determining T_(c) is governed by the intrinsic electromagnetic fields of the system. 展开更多
关键词 SUPERconductORS TRANSITION conductIVITY
下载PDF
Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
15
作者 刘帽 严泉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期423-429,共7页
A rotary-concentrating device for thermal conduction is constructed to control and guide thermal energy transmitting in elastic plates.The designed device has the ability of concentrating for thermal conduction and co... A rotary-concentrating device for thermal conduction is constructed to control and guide thermal energy transmitting in elastic plates.The designed device has the ability of concentrating for thermal conduction and controlling the processes of thermal diffusion in a plate.The multilayered isotropic material properties of the rotary-concentrating device are derived based on the transformation and rotary medium method and a rotation parameter to control the thermal diffusion process is introduced.The efficiency of the rotary-concentrating device for thermal conduction is verified.Stability of temperature fields in a plate with the rotary-concentrating device is analyzed to study the performance of rotary-concentrating.Numerical examples show that the constructed rotary-concentrating device for thermal conduction can effectively rotate and focus on the thermal energy into the device for a wide range of diffusion temperatures,which can enhance the thermal conduction.Therefore,this study can provide a theoretical support for potential applications in fields of energy harvesting and thermal conduction control. 展开更多
关键词 rotary-concentrating thermal conduction isotropic thermodynamic parameters control of thermal conduction process
下载PDF
His-Purkinje conduction system pacing combined with atrioventricular node ablation improves quality of life in older patients with persistent atrial fibrillation refractory to multiple ablation procedures
16
作者 Peng QI Yi-Zhen YANG +7 位作者 Liang SHI Yan-Jiang WANG Ying TIAN Ke-Xin YUAN Xue-Feng CHEN Shu-Ren LI Yi DANG Xing-Peng LIU 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2023年第2期130-138,共9页
BACKGROUND Recurrence of atrial fibrillation(AF)is common in patients with persistent AF even after multiple ablation procedures.His-Purkinje conduction system pacing(HPCSP)combined with atrioventricular node ablation... BACKGROUND Recurrence of atrial fibrillation(AF)is common in patients with persistent AF even after multiple ablation procedures.His-Purkinje conduction system pacing(HPCSP)combined with atrioventricular node ablation(AVNA)is effective in managing patients with AF and heart failure.This study aimed to determine whether HPCSP combined with AVNA can improve quality of life and alleviate symptoms in older patients with symptomatic persistent AF refractory to multiple ablation procedures,as well as evaluate the feasibility and safety of this therapy.METHODS Older patients(≥65 years)with symptomatic persistent AF refractory to at least two ablation procedures were treated with combined HPCSP and AVNA.The success rates and complications were recorded.Pacing parameters,European Heart Rhythm Association(EHRA)scores,and Atrial Fibrillation Effect on Quality-of-Life(AFEQT)scores obtained perioperatively were compared with those recorded at the 6-month follow-up examination.RESULTS Thirty-one patients were enrolled;of those,only thirty patients were eventually treated with AVNA because one patient developed a complete atrioventricular block following the withdrawal of the His bundle pacing lead.The success rates were 100%for HPCSP(22 cases with His bundle pacing,and 9 cases with left bundle branch pacing)and 93.3%(28/30)for AVNA,respectively.By the 6-month follow-up examination,EHRA scores improved significantly(3.00±0.73 vs.2.44±0.63,P=0.014)and AFEQT scores increased markedly(49.6±20.6 vs.70.9±14.0,P=0.001).No severe complications developed.CONCLUSIONS When used in older patients with symptomatic persistent AF refractory to multiple ablation procedures,HPCSP combined with AVNA significantly alleviated symptoms and improved quality of life during short-term follow-up.This therapy was proved to be safe and effective in this patient population. 展开更多
关键词 patients markedly conduction
下载PDF
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 被引量:1
17
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Flexible, Transparent and Conductive Metal Mesh Films with Ultra‑High FoM for Stretchable Heating and Electromagnetic Interference Shielding 被引量:1
18
作者 Zibo Chen Shaodian Yang +9 位作者 Junhua Huang Yifan Gu Weibo Huang Shaoyong Liu Zhiqiang Lin Zhiping Zeng Yougen Hu Zimin Chen Boru Yang Xuchun Gui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期201-213,共13页
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan... Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications. 展开更多
关键词 Metal mesh Transparent conductive film Stretchable heater Electromagnetic interference shielding
下载PDF
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:1
19
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode Interface conductive network Ionic transport Mechanical stability
下载PDF
Deterioration of equivalent thermal conductivity of granite subjected to heating-cooling treatment 被引量:1
20
作者 Mohua Bu Peng Zhang +3 位作者 Pingye Guo Jiamin Wang Zhaolong Luan Xin Jin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4229-4246,共18页
Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The... Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The transient hot-wire technique was used to determine the equivalent thermal conductivity(ETC)of the granite before and after treatment.The deterioration mechanism of ETC is analyzed from the meso-perspective.Finally,the numerical model is used to quantitatively study the impact of cooling rate on the microcrack propagation and heat conduction characteristics of granite.The results show that the ETC of granite is not only related to the heating temperature,but also affected by the cooling rate.The ETC of granite decreases nonlinearly with increasing heating temperature.A faster cooling rate causes a greater decrease in ETC at the same heating temperature.The higher the heating temperature,the stronger the influence of cooling rate on ETC.The main explanation for the decrease in ETC of granite is the increase in porosity and microcrack density produced by the formation and propagation of pore structure and microcracks during heating and cooling.Further analysis displays that the damage of granite at the heating stage is induced by the difference in thermal expansion and elastic properties of mineral particles.At the cooling stage,the faster cooling rate causes a higher temperature gradient,which in turn produces greater thermal stress.As a result,it not only causes new cracks in the granite,but also aggravates the damage at the heating stage,which induces a further decrease in the heat conduction performance of granite,and this scenario is more obvious at higher temperatures. 展开更多
关键词 Equivalent thermal conductivity(ETC) GRANITE Heating-cooling treatment Pore structure MICROCRACK Grain-based model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部