Formation of copper wiring on a polyimide film by laser irradiation to a stable copper-complex film consisting of glyoxylic acid copper complex and methylamine copper complex in air has been investigated. A stable met...Formation of copper wiring on a polyimide film by laser irradiation to a stable copper-complex film consisting of glyoxylic acid copper complex and methylamine copper complex in air has been investigated. A stable metallic copper on the polyimide film was precipitated even in air. Since this copper was generated only in the laser-irradiated parts, direct patterning of copper wiring was possible. It was also found that copper was precipitated by electroless copper plating on the laser-deposited copper wiring and it was possible to thicken the copper wiring by this precipitation. The resistivity of the copper wiring was almost the same as that of the bulk of metallic copper. The developed method—combining laser irradiation to a copper-complex-coated film and electroless copper plating—enables the high-speed deposition of fine copper wiring on a polyimide film in air by a printing process, indicating an inexpensive and useful process for fabricating copper wiring without high vacuum facility and heat-treatment under inert gas.展开更多
Preparation of a glyoxylic acid copper complex and fabrication of fine copper wire by CO2 laser irradiation in air to a thin film of that complex have been investigated. Irradiating laser to the complex thin film spin...Preparation of a glyoxylic acid copper complex and fabrication of fine copper wire by CO2 laser irradiation in air to a thin film of that complex have been investigated. Irradiating laser to the complex thin film spin-coated on a glass substrate, thin film of metallic copper was fabricated in areas that were subjected to laser irradiation in air. The thickness of this thin copper film was approx. 30 to 40 nm, and as non-irradiated areas were etched and removed by a soluble solvent of the copper complex, fine copper wire with 200 μm width was formed by laser direct patterning. The resistivity of this thin copper film depended on the irradiation intensity of the laser and was 3.0 × 10–5 Ω·cm at 12 W intensity (sweep speed: 20 mm/s). This method enables the high-speed deposition of copper wiring in air by a printing process, indicating an inexpensive and useful process for fabricating copper wiring.展开更多
文摘Formation of copper wiring on a polyimide film by laser irradiation to a stable copper-complex film consisting of glyoxylic acid copper complex and methylamine copper complex in air has been investigated. A stable metallic copper on the polyimide film was precipitated even in air. Since this copper was generated only in the laser-irradiated parts, direct patterning of copper wiring was possible. It was also found that copper was precipitated by electroless copper plating on the laser-deposited copper wiring and it was possible to thicken the copper wiring by this precipitation. The resistivity of the copper wiring was almost the same as that of the bulk of metallic copper. The developed method—combining laser irradiation to a copper-complex-coated film and electroless copper plating—enables the high-speed deposition of fine copper wiring on a polyimide film in air by a printing process, indicating an inexpensive and useful process for fabricating copper wiring without high vacuum facility and heat-treatment under inert gas.
文摘Preparation of a glyoxylic acid copper complex and fabrication of fine copper wire by CO2 laser irradiation in air to a thin film of that complex have been investigated. Irradiating laser to the complex thin film spin-coated on a glass substrate, thin film of metallic copper was fabricated in areas that were subjected to laser irradiation in air. The thickness of this thin copper film was approx. 30 to 40 nm, and as non-irradiated areas were etched and removed by a soluble solvent of the copper complex, fine copper wire with 200 μm width was formed by laser direct patterning. The resistivity of this thin copper film depended on the irradiation intensity of the laser and was 3.0 × 10–5 Ω·cm at 12 W intensity (sweep speed: 20 mm/s). This method enables the high-speed deposition of copper wiring in air by a printing process, indicating an inexpensive and useful process for fabricating copper wiring.