期刊文献+
共找到4,842篇文章
< 1 2 243 >
每页显示 20 50 100
Microstructure and electrical properties of Y_2O_3-doped ZnO-based varistor ceramics prepared by high-energy ball milling 被引量:14
1
作者 Hongyu Liu Xueming Ma +1 位作者 Dongmei Jiang Wangzhou Shi 《Journal of University of Science and Technology Beijing》 CSCD 2007年第3期266-270,共5页
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le... Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics. 展开更多
关键词 inorganic materials electrical properties high-energy ball milling VARISTOR MICROSTRUCTURE low-temperature sintering zinc oxide yttrium oxide
下载PDF
Microstructure and Electrical Properties of Er_2O_3-Doped ZnO-Based Varistor Ceramics Prepared by High-Energy Ball Milling 被引量:7
2
作者 刘宏玉 孔慧 +2 位作者 蒋冬梅 石旺舟 马学鸣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第1期120-123,共4页
The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing ... The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics. 展开更多
关键词 VARISTOR Er2O3 MICROSTRUCTURE electrical property high-energy ball milling low-temperature sintering rare earths
下载PDF
Optimization of Process Parameters for in High-Energy Ball Milling of CNTs/Al2024 Composites Through Response Surface Methodology 被引量:3
3
作者 Li Guo Xiaolan Cai +5 位作者 Lei Zhou Cui Hu Changjiang Yang Ziyang Wang Wenzhong Zhang Gang Peng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第1期53-59,共7页
The mathematical models are developed to evaluate the ultimate tensile strength( UTS) and hardness of CNTs / Al2024 composites fabricated by high-energy ball milling. The effects of the preparation variables which are... The mathematical models are developed to evaluate the ultimate tensile strength( UTS) and hardness of CNTs / Al2024 composites fabricated by high-energy ball milling. The effects of the preparation variables which are milling time,rotational speed,mass fraction of CNTs and ball to powder ratio on UST and hardness of CNTs / Al2024 composites are investigated. Based on the central composite design( CCD),a quadratic model is developed to correlate the fabrication variables to the UST and hardness. From the analysis of variance( ANOVA),the most influential factor on each experimental design response is identified. The optimum conditions for preparing CNTs / Al2024 composites are found as follows: 1. 53 h milling time,900 r / min rotational speed,mass fraction of CNTs 2. 87% and Ball to powder ratio 25 ∶ 1. The predicted maximum UST and hardness are 273.30 MPa and 261.36 HV,respectively. And the experimental values are 283.25 MPa and256.8 HV,respectively. It is indicated that the predicted UST and hardness after process optimization are found to agree satisfactory with the experimental values. 展开更多
关键词 high-energy ball milling CNTs/Al2024 Central composite design OPTIMIZATION
下载PDF
Manufacturing a TiAl alloy by high-energy ball milling and subsequent reactive sintering
4
作者 QU Shengguan LI Xiaoqiang +2 位作者 LI Yuanyuan HU Lianxi WANG Erde 《Rare Metals》 SCIE EI CAS CSCD 2006年第1期21-26,共6页
A TiAl alloy was fabricated by high-energy ball milling and subsequent reactive sintering from the mixed powders of Ti and Al. High-energy ball milling produced a kind of particular composite powders with an extremely... A TiAl alloy was fabricated by high-energy ball milling and subsequent reactive sintering from the mixed powders of Ti and Al. High-energy ball milling produced a kind of particular composite powders with an extremely fine altemative Ti and Al lamella structure. The composite powders not only possessed good consolidation and densification characteristics, but also resulted in the augment of nucleation rate of α and γ titanium aluminides during solid-phase reactive sintering After a series of processing, pressing, degassing, extrusion, and sintering, the resultant TiAl alloy presented high relative density and refined grain sizes of (α2 + γ) lamella and γ phases. The compressive yield strength of the sintered TiAl reached 600 MPa at 800℃. 展开更多
关键词 TiAl alloy high-energy ball milling reactive sintering
下载PDF
Synthesis of cathode material LiMn_(2)O_(4)for lithium-ion batteries by high-energy ball milling
5
作者 胡国荣 彭忠东 +2 位作者 杨建红 周贵海 刘业翔 《中国有色金属学会会刊:英文版》 CSCD 2000年第6期817-819,共3页
Using electrolytic manganese dioxide and Li 2CO 3 as starting materials, the precursor of LiMn 2O 4 as cathode materials for lithium ion batteries was obtained by high energy ball milling. The LiMn 2O 4 powder was syn... Using electrolytic manganese dioxide and Li 2CO 3 as starting materials, the precursor of LiMn 2O 4 as cathode materials for lithium ion batteries was obtained by high energy ball milling. The LiMn 2O 4 powder was synthesized by calcinating the as milling powder at 750 ℃ for 24 h. X ray diffraction, SEM, cyclic voltammograms and charge discharge were carried out to investigate the property of LiMn 2O 4 cathode materials. Results show that the synthesized material, which is of standard spinel structure, possesses high reversibility of electrochemistry. The capacity in EC DMC(1∶1)+1 mol/L LiPF 6 electrolyte during first discharge is determined to be 125 mA·h/g.[ 展开更多
关键词 lithium-ion batteries cathode materials high-energy ball milling
下载PDF
Modelling of the High-Energy Ball Milling Process
6
作者 Mohsen Mhadhbi 《Advances in Materials Physics and Chemistry》 2021年第1期31-44,共14页
In this paper, the milling parameters of high energy ball mill (Fritsch Pulverisette 7) like vial geometry, number and size of balls and speed of the mill were modelled and discussed. Simulations through discrete elem... In this paper, the milling parameters of high energy ball mill (Fritsch Pulverisette 7) like vial geometry, number and size of balls and speed of the mill were modelled and discussed. Simulations through discrete element method (DEM) provide correlation between the milling parameters. A mathematical model is used to improve and develop this process. The results show that the loss of powder mass can remarkably improve the performance of milling. The balls made of stainless-steel have a positive effect on the milling efficiency. The simulation shows that the high ball milling velocities can contribute to faster particle size reduction. 展开更多
关键词 ball mill Modelling Discrete Element Method Planetary ball mill high-energy ball milling
下载PDF
Preparation of Bi_(4)Ti_(3)O_(12)(BIT)Ceramics via a High-Energy Ball Milling Process Doped with Multi-Walled Carbon Nanotubes(MWNTs)
7
作者 Alexandre Goncalves Pinheiro Gilberto Dantas Saraiva +1 位作者 Josué Mendes Filho Antonio Sergio Bezerra Sombra 《Materials Sciences and Applications》 2013年第9期549-555,共7页
We prepared the Nano-sized bismuth titanate Bi4Ti3O12 (BIT) powders, through a high-energy ball milling process from their oxides Bi2O3 and TiO2. This BIT phase can be formed after a milling process for 40 min. With a... We prepared the Nano-sized bismuth titanate Bi4Ti3O12 (BIT) powders, through a high-energy ball milling process from their oxides Bi2O3 and TiO2. This BIT phase can be formed after a milling process for 40 min. With an increasing milling time, this particle size of mixture is gradually reduced, thus, we have mostly an amorphous phase. The BIT ceramics were duly obtained by sintering the synthesized powders at temperatures ranging from 850°C to 1000°C. The BIT ceramics sintered at 1020°C for 1 h, exhibiting a density with 7.52 g/cm3 of a crystaline phase and a dielectric of K = 288.11 (100 Hz), as well as a dielectric loss of 0.05 (100 kHz). The High-energy ball milling process is a promising way to prepare BIT ceramics. After the preparation of the BIT, we doped it with the Multi-Walled Carbon Nanotubes which are properly obtained by a chemical vapour deposition (CVD), using nickel as a catalyst, as well as using acetilene at 720°C, and then proceeded with the dielectric and optical measurements. 展开更多
关键词 Bi_(4)Ti_(3)O_(12) Ceramics Ferroelectric high-energy ball milling Sintering Carbon Nanotubes MWNT
下载PDF
Preparation of CNT/AlS i10Mg composite powders by high-energy ball milling and their physical properties
8
作者 Lin-zhi Wang Ying Liu +3 位作者 Wen-hou Wei Xu-guang An Tao Zhang Ya-yun Pu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第3期330-338,共9页
This study investigated the effects of carbon nanotube (CNT) concentration on the micro-morphologies and laser absorption proper- ties of CNT/AlSi10Mg composite powders produced by high-energy ball milling. A scanni... This study investigated the effects of carbon nanotube (CNT) concentration on the micro-morphologies and laser absorption proper- ties of CNT/AlSi10Mg composite powders produced by high-energy ball milling. A scanning electron microscope, X-ray diffractometer, laser particle size analyzer, high-temperature synchronous thermal analyzer, and UV/VIS/NIR spectrophotometer were used for the analysis of micro- graphs, phases, granulometric parameters, thermal properties, and laser absorption properties of the composite powders, respectively. The results showed that the powders gradually changed from flake- to granule-like morphology and the average particle size sharply decreased with in- creases in milling rotational speed and milling time. Moreover, a uniform dispersion of CNTs in AlSi10Mg powders was achieved only for a CNT content of 1.5wt%. Laser absorption values of the composite powders were also observed to gradually increase with the increase of CNT concentration, and different spectra displayed characteristic absorption peaks at a wavelength of approximately 826 nm. 展开更多
关键词 metal matrix composites aluminum alloys carbon nanotubes powder metallurgy particle size distribution ball milling physi-cal properties
下载PDF
A Mssbauer study of iron/polytetrafluoroethylene nanocomposites prepared by high-energy ball milling
9
作者 QIAN Fang-Zhen Belhachat MELHACHAT CHEN Chun-Xia 《Nuclear Science and Techniques》 SCIE CAS CSCD 2006年第3期139-142,共4页
Iron/polytetrafluoroethylene (Fe/PTFE) nanocomposites were prepared by means of high-energy ball milling for different lengths of time. Three new components of FeF2, FeF3, and Fe3C in the resultants were mainly in- ve... Iron/polytetrafluoroethylene (Fe/PTFE) nanocomposites were prepared by means of high-energy ball milling for different lengths of time. Three new components of FeF2, FeF3, and Fe3C in the resultants were mainly in- vestigated using the M?ssbauer spectroscopy (MS). The components and average grain size of the nanocomposites were also measured using X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. 展开更多
关键词 纳米复合材料 高能球磨 光谱学 MS
下载PDF
Frequency and temperature dependent electrical characteristics of CaTiO_(3) nano-ceramic prepared by high-energy ball milling 被引量:7
10
作者 Subhanarayan SAHOO Umasankar DASH +1 位作者 S.K.S.PARASHAR S.M.ALI 《Journal of Advanced Ceramics》 SCIE CAS 2013年第3期291-300,共10页
Nanocrystalline calcium titanate(CT)ceramic has been synthesized by a combination of solid-state reaction and high-energy ball milling.This nano-ceramic is characterized by X-ray diffraction(XRD),dielectric study and ... Nanocrystalline calcium titanate(CT)ceramic has been synthesized by a combination of solid-state reaction and high-energy ball milling.This nano-ceramic is characterized by X-ray diffraction(XRD),dielectric study and impedance spectroscopy.The XRD pattern shows single phase ceramic of orthorhombic symmetry.The frequency-dependent dielectric study shows that the dielectric constant is maximized at low frequencies and decreases with an increase in frequency.Impedance spectroscopy analyses reveal a non-Debye type relaxation phenomenon.A significant shift in impedance loss peaks toward the higher-frequency side indicates conduction in the material favoring the long-range motion of mobile charge carriers.The grain conduction effect is observed from the complex impedance spectrum by the appearance of one semicircular arc in Nyquist plot.It is also observed that the resistance decreases with an increase in temperature showing a negative temperature coefficient of resistance(NTCR).Various thermistor parameters have been calculated by fitting with Steinhart-Hart equation.The modulus plots represent the presence of temperature-dependent electrical relaxation phenomenon with the material.The frequency-dependent AC conductivity at different temperatures indicates that the conduction process is thermally activated.The activation energy has been calculated from an Arrhenius plot of DC conductivity and relaxation frequency. 展开更多
关键词 high-energy ball milling dielectric study impedance spectroscopy THERMISTOR CONDUCTIVITY
原文传递
Behavior of Fe Powder During High-Energy Ball Milling Cooperated with Dielectric Barrier Discharge Plasma 被引量:5
11
作者 Leyang DAI 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第1期63-68,共6页
In this study, nanostructured Fe powders were synthesized following 10 hours of high-energy ball milling with a superimposed dielectric barrier discharge plasma (DBDP). The mean size of the milled powder was approxi... In this study, nanostructured Fe powders were synthesized following 10 hours of high-energy ball milling with a superimposed dielectric barrier discharge plasma (DBDP). The mean size of the milled powder was approximately 100 nm with an average grain size of 16.2 nm. The influence of DBDP on the underlying grain refinement mechanisms during ball milling was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and BET methods. Our results show that the Fe particles displayed an extraordinary plasticity during the early milling stages under the action of DBDP, and that the plastic deformation experienced by the Fe particles during this stage was more severe than that present in normal milling. A high concentration of spherical Fe particles, approximately 50-100 nm in diameter, was documented via TEM. We propose that these spherical particles were generated via high temperature disintegration as a result of DBDP electron bombardment during ball milling. Our results suggest that it may be possible to significantly refine metallic powders during milling via the superimposition of DBDP. 展开更多
关键词 Dielectric barrier discharge plasma (DBDP) high-energy ball milling Nano-Fepowder Plastic deformation Elevated temperature disintegration
原文传递
Preparation of TiAl alloy powder by high-energy ball milling and diffusion reaction at low temperature 被引量:7
12
作者 Hui-Ping Shao Zhi Wang +2 位作者 Tao Lin Qing Ye Zhi-Meng Guo 《Rare Metals》 SCIE EI CAS CSCD 2018年第1期21-25,共5页
In this paper, TiAl alloy powders were prepared successfully by high-energy ball milling and diffusion reaction in vacuum at low temperature. The titanium powder, aluminum powder, and titanium hydride powder were used... In this paper, TiAl alloy powders were prepared successfully by high-energy ball milling and diffusion reaction in vacuum at low temperature. The titanium powder, aluminum powder, and titanium hydride powder were used as raw materials. The samples were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), and differential thermal analysis(DTA). The results show that the alloy powders with the main intermetallic compounds of TiAl are obtained using Ti-Al powders and TiH2-Al powders after heated for 2 h at 500 ℃,3 h at 600 ℃,and 3 h at 750 ℃,respectively.The average grain sizes of alloy powder are about 45 and20 μm with irregular shape, respectively. The prepared TiAl alloy powders are relatively pure, and the average quality content of oxygen in the alloy powders is0.33 wt%. The forming process of alloy powder contains both the diffusion reaction of Ti and Al,which gives priority to the diffusion reaction of aluminum. 展开更多
关键词 high-energy ball milling Titanium hydride powder Titanium powder TiAl alloy powder Diffusion reaction
原文传递
The influence of spark plasma sintering temperatures on the microstructure,hardness,and elastic modulus of the nanocrystalline Al-xV alloys produced by high-energy ball milling 被引量:1
13
作者 J.Christudasjustus C.S.Witharamage +2 位作者 Ganesh Walunj T.Borkar R.K.Gupta 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第27期68-76,共9页
Al-xV alloys(x=2 at.%,5 at.%,10 at.%)with nanocrystalline structure and high solid solubility of V were produced in powder form by high-energy ball milling(HEBM).The alloy powders were consolidated by spark plasma sin... Al-xV alloys(x=2 at.%,5 at.%,10 at.%)with nanocrystalline structure and high solid solubility of V were produced in powder form by high-energy ball milling(HEBM).The alloy powders were consolidated by spark plasma sintering(SPS)employing a wide range of temperatures ranging from 200 to 400°C.The microstructure and solid solubility of V in Al were investigated using X-ray diffraction analysis,scanning electron microscope and transmission electron microscope.The microstructure was influenced by the SPS temperature and V content of the alloy.The alloys exhibited high solid solubility of V–six orders of magnitude higher than that in equilibrium state and grain size<50 nm at all the SPS temperatures.The formation of Al3V intermetallic was detected at 400℃.Formation of a V-lean phase and bimodal grain size was observed during SPS,which increased with the increase in SPS temperature.The hardness and elastic modulus,measured using nanoindentation,were significantly higher than commercial alloys.For example,Al-V alloy produced by SPS at 200℃ exhibited a hardness of 5.21 GPa along with elastic modulus of 96.21 GPa.The evolution of the microstructure and hardness with SPS temperatures has been discussed. 展开更多
关键词 Spark plasma sintering Aluminum alloys Nanocrystalline alloys high-energy ball milling NANOINDENTATION HARDNESS Elastic modulus
原文传递
Improving hydrogen storage thermodynamics and kinetics of Ce-Mg-Ni-based alloy by mechanical milling with TiF_(3)
14
作者 Hongwei Shang Wei Zhang +4 位作者 Xin Wei Yaqin Li Zeming Yuan Jun Li Yanghuan Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1593-1607,共15页
Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocompo... Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocomposite materials of Mg and additives.In this experiment,TiF_(3)was selected as an additive,and the mechanical milling method was employed to prepare the experimental alloys.The alloys used in this experiment were the as-cast Ce_(5)Mg_(85)Ni_(10),as-milled Ce_(5)Mg_(85)Ni_(10)and Ce_(5)Mg_(85)Ni_(10)+3 wt.%TiF3.The phase transformation,structural evolution,isothermal and non-isothermal hydrogenation and dehydrogenation performances of the alloys were inspected by XRD,SEM,TEM,Sievert apparatus,DSC and TGA.It revealed that nanocrystalline appeared in the as-milled samples.Compared with the as-cast alloy,ball milling made the particle dimension and grain size decrease dramatically and the defect density increase significantly.The addition of TiF_(3)made the surface of ball milling alloy particles markedly coarser and more irregular.Ball milling and adding TiF_(3)distinctly improved the activation and kinetics of the alloys.Moreover,ball milling along with TiF_(3)can decrease the onset dehydrogenation temperature of Mg-based hydrides and slightly ameliorate their thermodynamics. 展开更多
关键词 Mg-based hydrides TiF_(3) ball milling THERMODYNAMICS KINETICS
下载PDF
Structural, Magnetic and Heating Efficiency of Ball Milled γ-Fe2O3/Gd2O3 Nanocomposite for Magnetic Hyperthermia
15
作者 Abdelaziz Sabik 《Advances in Materials Physics and Chemistry》 CAS 2024年第1期15-23,共9页
The preparation of γ-Fe<sub>2</sub>O<sub>3</sub>/Gd<sub>2</sub>O<sub>3</sub> nanocomposite for possible use in magnetic hyperthermia application was done by ball millin... The preparation of γ-Fe<sub>2</sub>O<sub>3</sub>/Gd<sub>2</sub>O<sub>3</sub> nanocomposite for possible use in magnetic hyperthermia application was done by ball milling technique. The nanocomposite was characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The heating efficiency and the effect of milling time (5 h and 30 h) on the structural and magnetic properties of the nanocomposite were reported. XRD analysis confirms the formation of the nanocomposite, while magnetization measurements show that the milled sample present hysteresis with low coercivity and remanence. The specific absorption rate (SAR) under an alternating magnetic field is investigated as a function of the milling time. A mean heating efficiency of 68 W/g and 28.7 W/g are obtained for 5 h and 30 h milling times respectively at 332 kHz and 170 Oe. The results showed that the obtained nanocomposite for 5 h milling time is a promising candidate for magnetic hyperthermia due to his properties which show an interesting magnetic behavior and high specific absorption rate. 展开更多
关键词 Magnetic Hyperthermia Iron Oxides Nanoparticles Maghemite ball milling XRD VSM
下载PDF
Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel
16
作者 Lingzhi Xie Zhigang Xu +4 位作者 Yunzhe Qi Jinrong Liang Peng He Qiang Shen Chuanbin Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期917-929,共13页
In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicat... In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicated that the powder size significantly decreased,and the morphology of the Fe powder tended to be increasingly flat as the milling time increased.However,the prolonged milling duration had limited impact on the phase transition of the powder mixture.The main phases of all the samples sintered at 640℃ were α-Fe,α-Mn and Al,and a small amount of Fe2Al5 and Al8Mn5.When the sintering temperature increased to 1200℃,the phase composition was mainly comprised of γ-Fe and α-Fe.The weight loss fraction of the sintered sample decreased with milling time,i.e.,8.3wt% after 20 h milling compared to15.3wt% for 10 h.The Mn depletion region(MDR) for the 10,15,and 20 h milled samples was about 780,600,and 370 μm,respectively.The total porosity of samples sintered at 640℃ decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder.After sintering at 1200℃,the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%,respectively.The compressive strength and ductility of the 1200℃ sintered porous steel increased as the milling time increased. 展开更多
关键词 powder metallurgy porous steel ball milling time microstructure evolution compressive properties
下载PDF
Reactive ball-milling synthesis of Co-Fe bimetallic catalyst for efficient hydrogenation of carbon dioxide to value-added hydrocarbons
17
作者 Haipeng Chen Chenwei Wang +5 位作者 Mengyang Zheng Chenlei Liu Wenqiang Li Qingfeng Yang Shixue Zhou Xun Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期210-218,共9页
Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi... Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons. 展开更多
关键词 Reactive ball milling Co-Fe bimetallic catalyst Carbon dioxide Value-added hydrocarbon C–C coupling reaction
下载PDF
Effect of Milling Parameters on DEM Modeling of a Planetary Ball Mill
18
作者 Mohsen Mhadhbi 《Advances in Materials Physics and Chemistry》 CAS 2023年第4期49-58,共10页
The effects of the milling parameters involving shape of powder particles, rotation speed, and ball-to-powder diameter (BPDR) on DEM modeling in the planetary ball mill were investigated. BPDR was varied from 1 to 10.... The effects of the milling parameters involving shape of powder particles, rotation speed, and ball-to-powder diameter (BPDR) on DEM modeling in the planetary ball mill were investigated. BPDR was varied from 1 to 10. The results revealed that the size and shape of the powder particles do not give a significant change in simulation results when BPDR attains maximum value of 10. The increasing of BPDR leads to the increase of simulation time and size. Hence, the effect of change of the powder particle shape on the calculated data size is not significant. The results also revealed that the increasing rotation speed increases impact energy between powder particles. 展开更多
关键词 DEM Modeling milling Parameters Planetary ball mill Particles Shape
下载PDF
Low-Temperature Synthesis of Nano-AlN Based on Solid Nitrogen Source by Plasma-Assisted Ball Milling
19
作者 Zhuoli Yang Xianbin Hou Leyang Dai 《Journal of Renewable Materials》 SCIE EI 2023年第6期2941-2951,共11页
Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C_(4)H_(4)N_(4) system,respectively.The phase structure,functional groups and synthesis mechanism were analyzed by XRD and FT-IR,and the diff... Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C_(4)H_(4)N_(4) system,respectively.The phase structure,functional groups and synthesis mechanism were analyzed by XRD and FT-IR,and the differences in the synthesis process of nano-AlN with different solid nitrogen sources were discussed.The results show that C3H6N6 has a stable triazine ring structure,and its chemical bond is firm and difficult to break,so AlN cannot be synthesized directly by solid-solid reaction at room temperature.However,there are a large number of nitrile groups(-CN)and amino groups(-NH_(2))in C_(4)H_(4)N_(4) molecules.Under the combined action of plasma bombardment and mechanical energy activation,C_(4)H_(4)N_(4) molecules undergo polycondensation and deamination,so that the ball milling tank is filled with a large number of active nitrogen-containing groups such as N=,≡N,etc.These groups and ball milling activated Al can synthesize nano-AlN at room temperature,with a conversion rate of 92%.SEM,DSC/TG analysis showed that the powder obtained by ball milling was formed by soft agglomeration of many fine primary particles about 50–80 nm.The surface morphology of the powder was loose and porous,and it had strong activity.After annealing at 800℃,the conversion rate of the Al+C_(4)H_(4)N_(4) system reached 99%. 展开更多
关键词 Plasma-assisted ball milling solid nitrogen source melamine(C_(3)H_(6)N_(6)) aluminum nitride(AlN) low-temperature synthesis
下载PDF
Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling 被引量:2
20
作者 Yuanyuan Chen Zhangping Hu +5 位作者 Yifei Xu Jiangyong Wang Peter Schützendübe Yuan Huang Yongchang Liu Zumin Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第4期512-519,共8页
High silicon content Al-Si composites with a composition of Al-40 wt% Si were fabricated via a highenergy ball milling method. The microstructure evolution of Al-40 wt% Si milled powders and sintered composites has be... High silicon content Al-Si composites with a composition of Al-40 wt% Si were fabricated via a highenergy ball milling method. The microstructure evolution of Al-40 wt% Si milled powders and sintered composites has been thoroughly studied by scanning electron microscopy, X-ray diffraction, energydispersive spectrometry and high-resolution transmission electron microscopy. The mechanism of ball milling Al-40 wt% Si powders has been disclosed in detail: fracture mechanism dominating in the early stages, followed by the agglomeration mechanism, finally reaching the balance between the fragments and the agglomerates. It has been found that the average particle sizes of mixed Al-Si powders can be refined to the nanoscale, and the crystallite sizes of Al and Si have been reduced to 10nm and 62nm upon milling for 2h–50h, respectively. The finally formed Al-Si interfaces after ball milling for 50h are wellcohesive. A dense and homogenous Al-40 wt% Si composite have been achieved by solid-state sintering at550?C. The results thus provide an effective support for producing bulk nanostructured Al-Si composites. 展开更多
关键词 AL-SI COMPOSITES Interface structure high-energy ball milling NANOCRYSTALLINE powders
原文传递
上一页 1 2 243 下一页 到第
使用帮助 返回顶部