期刊文献+
共找到34,360篇文章
< 1 2 250 >
每页显示 20 50 100
Vagus nerve stimulation in intracerebral hemorrhage:the need for further research
1
作者 Sheharyar S.Baig Ali N.Ali Arshad Majid 《Neural Regeneration Research》 SCIE CAS 2025年第11期3213-3214,共2页
Vagus nerve stimulation(VNS)and stroke:Stroke is the second leading cause of death and the third leading cause of disability worldwide(Baig et al.,2023).There have been significant paradigm shifts in the management of... Vagus nerve stimulation(VNS)and stroke:Stroke is the second leading cause of death and the third leading cause of disability worldwide(Baig et al.,2023).There have been significant paradigm shifts in the management of acute ischemic stroke through mechanical thrombectomy.In chronic ischemic stroke,invasive VNS paired with rehabilitation is associated with a significant increase in upper limb motor recovery and is FDA-approved(Baig et al.,2023).There are no treatments of similar efficacy in acute intracerebral hemorrhage(ICH)where several promising trials,e.g.,TICH-2,STOP-AUST,and TRAIGE did not show improvements in functional outcomes(Puy et al.,2023). 展开更多
关键词 stimulation ACUTE
下载PDF
High-frequency repetitive transcranial magnetic stimulation promotes neural stem cell proliferation after ischemic stroke 被引量:6
2
作者 Jing Luo Yuan Feng +4 位作者 Zhongqiu Hong Mingyu Yin Haiqing Zheng Liying Zhang Xiquan Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1772-1780,共9页
Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous ... Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous neural stem cell regeneration,but its underlying mechanisms remain unclea r In this study,we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells.Additionally,repetitive TMS reduced the volume of cerebral infa rction in a rat model of ischemic stro ke caused by middle cerebral artery occlusion,im p roved rat cognitive function,and promoted the proliferation of neural stem cells in the ischemic penumbra.RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia.Furthermore,PCR analysis revealed that repetitive TMS promoted AKT phosphorylation,leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4.This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway,which ultimately promotes the prolife ration of neural stem cells.Subsequently,we validated the effect of repetitive TMS on AKT phosphorylation.We found that repetitive TMS promoted Ca2+influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway,thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway.These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway.This study has produced pioneering res ults on the intrinsic mechanism of repetitive TMS to promote neural function recove ry after ischemic stro ke.These results provide a stro ng scientific foundation for the clinical application of repetitive TMS.Moreover,repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications,but also provide an effective platform for the expansion of neural stem cells. 展开更多
关键词 AKT/β-catenin signaling brain stimulation Ca2+influx cell proliferation ischemic stroke middle cerebral artery occlusion neural stem cells neurological rehabilitation repetitive transcranial magnetic stimulation
下载PDF
Treadmill exercise in combination with acousto-optic and olfactory stimulation improves cognitive function in APP/PS1 mice through the brain-derived neurotrophic factor-and Cygb-associated signaling pathways
3
作者 Biao Xiao Chaoyang Chu +6 位作者 Zhicheng Lin Tianyuan Fang Yuyu Zhou Chuxia Zhang Jianghui Shan Shiyu Chen Liping Li 《Neural Regeneration Research》 SCIE CAS 2025年第9期2706-2726,共21页
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati... A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease. 展开更多
关键词 acousto-optic stimulation adult neurogenesis Alzheimer's disease amyloid precursor protein/presenilin 1 mice amyloid-beta deposition brain cell apoptosis cognitive impairment depression-like behavior involuntary treadmill exercise olfactory stimulation serum metabolites
下载PDF
Prolonged intermittent theta burst stimulation restores the balance between A_(2A)R-and A_(1)R-mediated adenosine signaling in the 6-hydroxidopamine model of Parkinson's disease
4
作者 Milica Zeljkovic Jovanovic Jelena Stanojevic +4 位作者 Ivana Stevanovic Milica Ninkovic Tihomir V.Ilic Nadezda Nedeljkovic Milorad Dragic 《Neural Regeneration Research》 SCIE CAS 2025年第7期2053-2067,共15页
An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease prog... An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control. 展开更多
关键词 A_(1)R A_(2A)R adenosine receptors ADENOSINE ecto-5′-nucleotidase intermittent theta burst stimulation non-invasive brain stimulation Parkinson's disease purinergic signalling
下载PDF
Repetitive transcranial magnetic stimulation in Alzheimer’s disease:effects on neural and synaptic rehabilitation
5
作者 Yi Ji Chaoyi Yang +7 位作者 Xuerui Pang Yibing Yan Yue Wu Zhi Geng Wenjie Hu Panpan Hu Xingqi Wu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第2期326-342,共17页
Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neur... Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations. 展开更多
关键词 Alzheimer’s disease amyloid deposition apoptotic mechanisms BIOMARKER neural regeneration NEURODEGENERATION repetitive transcranial magnetic stimulation synaptic plasticity
下载PDF
Contribution of glial cells to the neuroprotective effects triggered by repetitive magnetic stimulation:a systematic review 被引量:1
6
作者 Susana A.Ferreira Nuno Pinto +2 位作者 Inês Serrenho Maria Vaz Pato Graça Baltazar 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期116-123,共8页
Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to t... Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to the improvement trigge red by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested.To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases.Web of Science and PubMed were searched fo r the effects of high-frequency-repetitive transcranial magnetic stimulation,low-frequencyrepetitive transcranial magnetic stimulation,intermittent theta-bu rst stimulation,continuous thetaburst stimulation,or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells.A total of 52 studies were included.The protocol more frequently used was high-frequency-repetitive magnetic stimulation,and in models of disease,most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and mic roglial reactivity,a decrease in the release of pro-inflammatory cyto kines,and an increase of oligodendrocyte proliferation.The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation.Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol,and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines,repo rting the absence of effects on these paramete rs.In what concerns the use of magnetic stimulation in unlesioned animals or cells,most articles on all four types of stimulation reported a lack of effects.It is also important to point out that the studies were developed mostly in male rodents,not evaluating possible diffe rential effects of repetitive transcranial magnetic stimulation between sexes.This systematic review supports that thro ugh modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models.Howeve r,it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects,emphasizing the need for more studies in this field. 展开更多
关键词 ASTROCYTE GLIA high-frequency repetitive magnetic stimulation inflammation low-frequency repetitive magnetic stimulation MICROGLIA neurologic disorders OLIGODENDROCYTE repetitive magnetic stimulation theta-burst stimulation
下载PDF
Vagus nerve stimulation in cerebral stroke:biological mechanisms,therapeutic modalities,clinical applications,and future directions 被引量:4
7
作者 Li Du Xuan He +3 位作者 Xiaoxing Xiong Xu Zhang Zhihong Jian Zhenxing Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1707-1717,共11页
Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the ... Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the well-being of the individual and the broader socioeconomic impact.Currently,poststroke brain dysfunction is a major and difficult area of treatment.Vagus nerve stimulation is a Food and Drug Administration-approved exploratory treatment option for autis m,refractory depression,epilepsy,and Alzheimer’s disease.It is expected to be a novel therapeutic technique for the treatment of stroke owing to its association with multiple mechanisms such as alte ring neurotransmitters and the plasticity of central neuro ns.In animal models of acute ischemic stroke,vagus nerve stimulation has been shown to reduce infarct size,reduce post-stroke neurological damage,and improve learning and memory capacity in rats with stroke by reducing the inflammatory response,regulating bloodbrain barrier permeability,and promoting angiogenesis and neurogenesis.At present,vagus nerve stimulation includes both invasive and non-invasive vagus nerve stimulation.Clinical studies have found that invasive vagus nerve stimulation combined with rehabilitation therapy is effective in im proving upper limb motor and cognitive abilities in stroke patients.Further clinical studies have shown that non-invasive vagus nerve stimulation,including ear/ce rvical vagus nerve stimulation,can stimulate vagal projections to the central nervous system similarly to invasive vagus nerve stimulation and can have the same effect.In this paper,we first describe the multiple effects of vagus nerve stimulation in stroke,and then discuss in depth its neuroprotective mechanisms in ischemic stroke.We go on to outline the res ults of the current major clinical applications of invasive and non-invasive vagus nerve stimulation.Finally,we provide a more comprehensive evaluation of the advantages and disadvantages of different types of vagus nerve stimulation in the treatment of cerebral ischemia and provide an outlook on the developmental trends.We believe that vagus nerve stimulation,as an effective treatment for stroke,will be widely used in clinical practice to promote the recovery of stroke patients and reduce the incidence of disability. 展开更多
关键词 cerebral stroke NEUROPLASTICITY non-invasive vagus nerve stimulation REHABILITATION vagus nerve stimulation
下载PDF
Working toward an integrated plasticity/network framework for repetitive transcranial magnetic stimulation to inform tailored treatments 被引量:2
8
作者 Jessica Moretti Jennifer Rodger 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1423-1424,共2页
Non-invasive brain stimulation techniques(NIBS),including repetitive transcranial magnetic stimulation(rTMS) and transcranial electric stim ulation(tES),are increasingly being adopted clinically for treatment of neuro... Non-invasive brain stimulation techniques(NIBS),including repetitive transcranial magnetic stimulation(rTMS) and transcranial electric stim ulation(tES),are increasingly being adopted clinically for treatment of neuropsychiatric and neurological disorders,albeit with varying success.The rationale behind the use of NIBS has historically been that stim ulation techniques modulate neuronal activity in the targeted region and consequently induce plasticity which can lead to therapeutic outcomes. 展开更多
关键词 stimulation TRANSCRANIAL treatment
下载PDF
Brain-wide activation involved in 15 mA transcranial alternating current stimulation in patients with first-episode major depressive disorder 被引量:1
9
作者 Jie Wang Wenfeng Zhao +8 位作者 Huang Wang Haixia Leng Qing Xue Mao Peng Baoquan Min Xiukun Jin Liucen Tan Keming Gao Hongxing Wang 《General Psychiatry》 CSCD 2024年第2期265-273,共9页
Background Although 15 mA transcranial alternating current stimulation(tACS)has a therapeutic effect on depression,the activations of brain structures in humans accounting for this tACS configuration remain largely un... Background Although 15 mA transcranial alternating current stimulation(tACS)has a therapeutic effect on depression,the activations of brain structures in humans accounting for this tACS configuration remain largely unknown.Aims To investigate which intracranial brain structures are engaged in the tACS at 77.5 Hz and 15 mA,delivered via the forehead and the mastoid electrodes in the human brain.Methods Actual human head models were built using the magnetic resonance imagings of eight outpatient volunteers with drug-naïve,first-episode major depressive disorder and then used to perform the electric field distributions with SimNIBS software.Results The electric field distributions of the sagittal,coronal and axial planes showed that the bilateral frontal lobes,bilateral temporal lobes,hippocampus,cingulate,hypothalamus,thalamus,amygdala,cerebellum and brainstem were visibly stimulated by the 15 mA tACS procedure.Conclusions Brain-wide activation,including the cortex,subcortical structures,cerebellum and brainstem,is involved in the 15 mA tACS intervention for first-episode major depressive disorder.Our results indicate that the simultaneous involvement of multiple brain regions is a possible mechanism for its effectiveness in reducing depressive symptoms. 展开更多
关键词 stimulation INVOLVEMENT ACTIVATION
下载PDF
High-frequency spinal cord stimulation produces longlasting analgesic effects by restoring lysosomal function and autophagic flux in the spinal dorsal horn 被引量:3
10
作者 Zhi-Bin Wang Yong-Da Liu +1 位作者 Shuo Wang Ping Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第2期370-377,共8页
High-frequency spinal cord stimulation(HF-SCS) has been established as an effective therapy for neuropathic pain. However, the analgesic mechanisms involved in HF-SCS remain to be clarified. In our study, adult rat ne... High-frequency spinal cord stimulation(HF-SCS) has been established as an effective therapy for neuropathic pain. However, the analgesic mechanisms involved in HF-SCS remain to be clarified. In our study, adult rat neuropathic pain was induced by spinal nerve ligation. Two days after modeling, the rats were subjected to 4 hours of HF-SCS(motor threshold 50%, frequency 10,000 Hz, and pulse width 0.024 ms) in the dorsal horn of the spinal cord. The results revealed that the tactile allodynia of spinal nerve-injured rats was markedly alleviated by HFSCS, and the effects were sustained for 3 hours after the stimulation had ceased. HF-SCS restored lysosomal function, increased the levels of lysosome-associated membrane protein 2(LAMP2) and the mature form of cathepsin D(matu-CTSD), and alleviated the abnormally elevated levels of microtubule-associated protein 1 A/B-light chain 3(LC3)-II and sequestosome 1(P62) in spinal nerve-injured rats. HF-SCS also mostly restored the immunoreactivity of LAMP2, which was localized in neurons in the superficial layers of the spinal dorsal horn in spinal nerve-injured rats. In addition, intraperitoneal administration of 15 mg/kg chloroquine for 60 minutes reversed the expression of the aforementioned proteins and shortened the timing of the analgesic effects of HF-SCS. These findings suggest that HF-SCS may exhibit longlasting analgesic effects on neuropathic pain in rats through improving lysosomal dysfunction and alleviating autophagic flux. This study was approved by the Laboratory Animal Ethics Committee of China Medical University, Shenyang, China(approval No. 2017 PS196 K) on March 1, 2017. 展开更多
关键词 autolysosome dorsal horn of spinal cord DYSFUNCTION electrical stimulation high-frequency spinal cord stimulation neuropathic pain spinal nerve ligation
下载PDF
Delayed improvements in visual memory task performance among chronic schizophrenia patients after high-frequency repetitive transcranial magnetic stimulation 被引量:3
11
作者 Xiang-Dong Du Zhe Li +13 位作者 Nian Yuan Ming Yin Xue-Li Zhao Xiao-Li Lv Si-Yun Zou Jun Zhang Guang-Ya Zhang Chuan-Wei Li Hui Pan Li Yang Si-Qi Wu Yan Yue Yu-Xuan Wu Xiang-Yang Zhang 《World Journal of Psychiatry》 SCIE 2022年第9期1169-1182,共14页
BACKGROUND Cognitive impairments are core characteristics of schizophrenia,but are largely resistant to current treatments.Several recent studies have shown that highfrequency repetitive transcranial magnetic stimulat... BACKGROUND Cognitive impairments are core characteristics of schizophrenia,but are largely resistant to current treatments.Several recent studies have shown that highfrequency repetitive transcranial magnetic stimulation(rTMS)of the left dorsolateral prefrontal cortex(DLPFC)can reduce negative symptoms and improve certain cognitive deficits in schizophrenia patients.However,results are inconsistent across studies.AIM To examine if high-frequency rTMS of the DLPFC can improve visual memory deficits in patients with schizophrenia.METHODS Forty-seven chronic schizophrenia patients with severe negative symptoms on stable treatment regimens were randomly assigned to receive active rTMS to the DLPFC(n=25)or sham stimulation(n=22)on weekdays for four consecutive weeks.Patients performed the pattern recognition memory(PRM)task from the Cambridge Neuropsychological Test Automated Battery at baseline,at the end of rTMS treatment(week 4),and 4 wk after rTMS treatment(week 8).Clinical symptoms were also measured at these same time points using the Scale for the Assessment of Negative Symptoms(SANS)and the Positive and Negative Syndrome Scale(PANSS).RESULTS There were no significant differences in PRM performance metrics,SANS total score,SANS subscores,PANSS total score,and PANSS subscores between active and sham rTMS groups at the end of the 4-wk treatment period,but PRM performance metrics(percent correct and number correct)and changes in these metrics from baseline were significantly greater in the active rTMS group at week 8 compared to the sham group(all P<0.05).Active rTMS treatment also significantly reduced SANS score at week 8 compared to sham treatment.Moreover,the improvement in visual memory was correlated with the reduction in negative symptoms at week 8.In contrast,there were no between-group differences in PANSS total score and subscale scores at either week 4 or week 8(all P>0.05).CONCLUSION High-frequency transcranial magnetic stimulation improves visual memory and reduces negative symptoms in schizophrenia,but these effects are delayed,potentially due to the requirement for extensive neuroplastic changes within DLPFC networks. 展开更多
关键词 COGNITION high-frequency repetitive transcranial magnetic stimulation Non-invasive brain stimulation Randomized controlled study SCHIZOPHRENIA Visual memory deficits
下载PDF
Neuroprotective effects of subthalamic nucleus high-frequency stimulation on substantia nigra neurons in a Parkinson's disease rat model 被引量:1
12
作者 Yu Ma Zhongcheng Wang +2 位作者 Jianguo Zhang Huanguang Liu Ying Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第9期1014-1017,共4页
BACKGROUND: Deep-brain stimulation has proven to be beneficial in the treatment of Parkinson's disease (PD) patients. OBJECTIVE: To investigate the effects of high-frequency stimulation (HFS) to the subthalamic... BACKGROUND: Deep-brain stimulation has proven to be beneficial in the treatment of Parkinson's disease (PD) patients. OBJECTIVE: To investigate the effects of high-frequency stimulation (HFS) to the subthalamic nucleus (STN) on neuronal apoptosis and apoptosis-related gene expression in the substantia nigra pars compacta, and to analyze the neuroprotective effect of HFS-STN. DESIGN, TIME AND SETTING: Neuronal morphology experiments were performed in the Beijing Neurosurgical Institute from May to December in 2005. MATERIALS: Forty healthy, adult, Sprague Dawley rats were used to establish a PD model with a unilateral microinjection of 6-hydroxydopamine into two target areas of the right medial forebrain bundle. 6-hydroxydopamine was purchased from Sigma (USA); high-frequency electrical stimulator was produced by World Precision Instruments (USA); Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) kit was a product of Nanjing Jiancheng Technology Co., Ltd. (China); and Bcl-2 and Bax protein assay kit were purchased from Wuhan Boster Bioengineering Co., Ltd. (China). METHODS: Forty rats were randomly divided into three groups. The stimulation group (n = 15) received HFS-STN on the day of PD modeling. The PD model group (n = 15) was used to establish the PD model. The control group (n = 10) was injected with normal saline containing 0.2 g/L ascorbic acid into two areas of the right medial forebrain bundle. MAIN OUTCOME MEASURES: Survival of dopaminergic neurons in the substantia nigra pars compacta was determined using Nissl staining. Apoptosis of dopaminergic neurons was detected using TUNEL techniques. Expression of anti-apoptotic protein, Bcl-2, and pro-apoptotic protein, Bax, were assayed by immunohistochemistry. RESULTS: Following 6-hydroxydopamine injection, the number of substantia nigra pars compacta neurons was reduced in the stimulation and PD model groups, compared to the control group. At 2 and 4 weeks post-surgery, the grey value of Nissl stained images was significantly less in the PD model and stimulation groups (P 〈 0.05), and the stimulation group exhibited greater grey values compared to the model group (P 〈 0.05). At 2 and 4 weeks post-surgery, the number of apoptotic neurons was significantly less in the stimulation group compared to the model group (P 〈 0.05). In addition, Bcl-2 and Bax expression, as well as the Bcl-2/Bax ratio, was much higher in the stimulation group compared to the model group (P 〈 0.05). CONCLUSION: HFS-STN has a neuroprotective effect on dopaminergic neurons in the substantia nigra pars compacta of PD rats by promoting Bcl-2 expression, inhibiting Bax expression, and reducing the number of apoptotic dopaminergic neurons. 展开更多
关键词 APOPTOSIS deep-brain stimulation high-frequency stimulation Parkinson's disease
下载PDF
Safety and effectiveness of neuromuscular electrical stimulation in cardiac surgery:A systematic review 被引量:2
13
作者 Christos Kourek Marios Kanellopoulos +4 位作者 Vasiliki Raidou Michalis Antonopoulos Eleftherios Karatzanos Irini Patsaki Stavros Dimopoulos 《World Journal of Cardiology》 2024年第1期27-39,共13页
BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction an... BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery,and may be a risk factor for prolonged duration of mechanical ventilation,associated with a higher risk of readmission and higher mortality.Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay.Neuromuscular electrical stimulation(NMES)is an alternative modality of exercise in patients with muscle weakness.A major advantage of NMES is that it can be applied even in sedated patients in the ICU,a fact that might enhance early mobilization in these patients.AIM To evaluate safety,feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery.METHODS We performed a search on Pubmed,Physiotherapy Evidence Database(PEDro),Embase and CINAHL databases,selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials(RCTs)that included implementation of NMES in patients before after cardiac surgery.RCTs were assessed for methodological rigor and risk of bias via the PEDro.The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function.RESULTS Ten studies were included in our systematic review,resulting in 703 participants.Almost half of them performed NMES and the other half were included in the control group,treated with usual care.Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery.Functional capacity was assessed in 8 studies via 6MWT or other indices,and improved only in 1 study before and in 1 after cardiac surgery.Nine studies explored the effects of NMES on muscle strength and function and,most of them,found increase of muscle strength and improvement in muscle function after NMES.NMES was safe in all studies without any significant complication.CONCLUSION NMES is safe,feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery,but has no significant effect on functional capacity. 展开更多
关键词 Neuromuscular electrical stimulation Cardiac surgery coronary artery bypass grafting Heart valve replacement Peak VO2 SAFETY
下载PDF
Alzheimer's disease with depressive symptoms: Clinical effect of intermittent theta burst stimulation repetitive transcranial magnetic stimulation 被引量:1
14
作者 Xin Jin Chun-Yun Xu +2 位作者 Jin-Feng Fei Yu Fang Cong-Hao Sun 《World Journal of Psychiatry》 SCIE 2024年第8期1216-1223,共8页
BACKGROUND Alzheimer's disease(AD),characterized by the ongoing deterioration of neural function,often presents alongside depressive features and greatly affects the quality of life of individuals living with the ... BACKGROUND Alzheimer's disease(AD),characterized by the ongoing deterioration of neural function,often presents alongside depressive features and greatly affects the quality of life of individuals living with the condition.Although several treatment methods exist,their efficacy is limited.In recent years,repetitive transcranial magnetic stimulation(rTMS)utilizing the theta burst stimulation(TBS)mode,specifically the intermittent TBS(iTBS),has demonstrated promising therapeutic potential in the management of neuropsychiatric disorders.AIM To examine the therapeutic efficacy of iTBS mode of rTMS for treating depressive symptoms in patients with AD.METHODS This retrospective study enrolled 105 individuals diagnosed with AD with depressive symptoms at Huzhou Third Municipal Hospital,affiliated with Huzhou University,between January 2020 and December 2023.Participants received standard pharmacological interventions and were categorized into control(n=53)and observation(n=52)groups based on treatment protocols.The observation group received iTBS mode of rTMS,while the control group received pseudo-stimulation.A comparative analysis evaluated psychological well-being,adverse events,and therapeutic at initiation of hospitalization(T0)and 15 days post-treatment(T1).RESULTS At T1,both groups exhibited a marked reduction in self-rating depression scale and Hamilton depression scale scores compared to T0.Furthermore,the observa-tion group showed a more pronounced decrease than the control group.By T1,the Mini-mental state examination scores for both groups had increased markedly from their initial T0 assessments.Importantly,the increase was particularly more substantial in the observation group than in the control group.Fourteen patients in the control group had ineffective treatment effects,while five patients in the observation group experienced the same.Additionally,the observation group experienced a substantially reduced incidence of ineffective treatment as compared to the control group(both P<0.05);there were no recorded serious adverse events in either group.CONCLUSION The iTBS model of rTMS effectively treated AD with depression,improving depressive symptoms and cognitive function in patients without serious adverse reactions,warranting clinical consideration. 展开更多
关键词 Alzheimer's disease Non-persistentθshort array fast pulse mode DEPRESSION Clinical efficacy DEMENTIA Repetitive transcranial magnetic stimulation
下载PDF
Millimetric devices for nerve stimulation:a promising path towards miniaturization
15
作者 Ryan M.Dorrian Anna V.Leonard Antonio Lauto 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1702-1706,共5页
Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implante... Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implanted pulse generators.These facto rs necessitate invasive surgical implantation and limit potential applications.Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications.However,device miniaturization presents a serious engineering challenge.This review presents significant advancements from several groups that have overcome this challenge and developed millimetricsized nerve stimulation devices.These are based on antennas,mini-coils,magneto-electric and optoelectronic materials,or receive ultrasound power.We highlight key design elements,findings from pilot studies,and present several considerations for future applications of these devices. 展开更多
关键词 biomedical engineering deep brain stimulation electrical engineering electrical stimulation NEUROMODULATION peripheral nerve stimulation
下载PDF
Effect of the combination of high-frequency repetitive magnetic stimulation and neurotropin on injured sciatic nerve regeneration in rats 被引量:5
16
作者 Jie Chen Xian-Ju Zhou Rong-Bin Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第1期145-151,共7页
Repetitive magnetic stimulation is effective for treating posttraumatic neuropathies following spinal or axonal injury.Neurotropin is a potential treatment for nerve injuries like demyelinating diseases.This study sou... Repetitive magnetic stimulation is effective for treating posttraumatic neuropathies following spinal or axonal injury.Neurotropin is a potential treatment for nerve injuries like demyelinating diseases.This study sought to observe the effects of high-frequency repetitive magnetic stimulation,neurotropin and their combined use in the treatment of peripheral nerve injury in 32 adult male Sprague-Dawley rats.To create a sciatic nerve injury model,a 10 mm-nerve segment of the left sciatic nerve was cut and rotated through 180°and each end restored continuously with interrupted sutures.The rats were randomly divided into four groups.The control group received only a reversed autograft in the left sciatic nerve with no treatment.In the high-frequency repetitive magnetic stimulation group,peripheral high-frequency repetitive magnetic stimulation treatment(20 Hz,20 min/d)was delivered for 10 consecutive days after auto-grafting.In the neurotropin group,neurotropin therapy(0.96 NU/kg per day)was administrated for 10 consecutive days after surgery.In the combined group,the combination of peripheral high-frequency repetitive magnetic stimulation(20 Hz,20 min/d)and neurotropin(0.96 NU/kg per day)was given for 10 consecutive days after the operation.The Basso-Beattie-Bresnahan locomotor rating scale was used to assess the behavioral recovery of the injured nerve.The sciatic functional index was used to evaluate the recovery of motor functions.Toluidine blue staining was performed to determine the number of myelinated fibers in the distal and proximal grafts.Immunohistochemistry staining was used to detect the length of axons marked by neurofilament 200.Our results reveal that the Basso-Beattie-Bresnahan locomotor rating scale scores,sciatic functional index,the number of myelinated fibers in distal and proximal grafts were higher and axon lengths were longer in the high-frequency repetitive magnetic stimulation,neurotropin and combined groups compared with the control group.These measures were not significantly different among the high-frequency repetitive magnetic stimulation,neurotropin and combined groups.Therefore,our results suggest that peripheral high-frequency repetitive magnetic stimulation or neurotropin can promote the repair of injured sciatic nerves,but their combined use seems to offer no significant advantage.This study was approved by the Animal Ethics Committee of the Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University,China on December 23,2014(approval No.2014keyan002-01). 展开更多
关键词 AXON myelinated NERVE fibers NERVE REGENERATION neurological rehabilitation NEUROTROPIN peripheral NERVE injury REPETITIVE magnetic stimulation SCIATIC NERVE trauma
下载PDF
Optimal transcorneal electrical stimulation parameters for preserving photoreceptors in a mouse model of retinitis pigmentosa
17
作者 Sam Enayati Karen Chang +10 位作者 Anton Lennikov Menglu Yang Cherin Lee Ajay Ashok Farris Elzaridi Christina Yen Kasim Gunes Jia Xie Kin-Sang Cho Tor Paaske Utheim Dong Feng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2543-2552,共10页
Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on pho... Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival.This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation(tcES)in mice affected by inherited retinal degeneration.Additionally,the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans.In this study,we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular,sine,and ramp waveforms.To investigate the functional effects of electrical stimulation on photoreceptors,we used human retinal explant cultures and rhodopsin knockout(Rho^(-/-))mice,demonstrating progressive photoreceptor degeneration with age.Human retinal explants isolated from the donors’eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro.Photoreceptor density was evaluated by rhodopsin immunolabeling.In vivo Rho^(-/-)mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms.Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response(OMR),respectively.Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas.Oscilloscope recordings indicated effective delivery of rectangular,sine,and ramp waveforms to the retina by transcorneal electrical stimulation,of which the ramp waveform required the lowest voltage.Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes.The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro(~0.5-1.5°C).Electrical stimulation increased photoreceptor survival in human retinal explant cultures,particularly at the ramp waveform.Transcorneal electrical stimulation(rectangular+ramp)waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results.Histology and immunolabeling demonstrated increased photoreceptor survival,improved outer nuclear layer thickness,and increased bipolar cell sprouting in Rho^(-/-)mice.These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina,improves photoreceptor survival in both human and mouse retinas,and increases visual function in Rho^(-/-)mice.Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion. 展开更多
关键词 bipolar cells electrical stimulation NEUROPROTECTION photoreceptor degeneration RETINA retinal explants retinitis pigmentosa transcorneal electrical stimulation WAVEFORM
下载PDF
Neural stimulation and modulation with subcellular precision by optomechanical bio-dart
18
作者 Guoshuai Zhu Jianyun Xiong +8 位作者 Xing Li Ziyi He Shuhan Zhong Junlin Chen Yang Shi Ting Pan Li Zhang Baojun Li Hongbao Xin 《Light(Science & Applications)》 SCIE EI CSCD 2024年第11期2668-2679,共12页
Neural stimulation and modulation at high spatial resolution are crucial for mediating neuronal signaling and plasticity,aiding in a better understanding of neuronal dysfunction and neurodegenerative diseases.However,... Neural stimulation and modulation at high spatial resolution are crucial for mediating neuronal signaling and plasticity,aiding in a better understanding of neuronal dysfunction and neurodegenerative diseases.However,developing a biocompatible and precisely controllable technique for accurate and effective stimulation and modulation of neurons at the subcellular level is highly challenging.Here,we report an optomechanical method for neural stimulation and modulation with subcellular precision using optically controlled bio-darts.The bio-dart is obtained from the tip of sunflower pollen grain and can generate transient pressure on the cell membrane with submicrometer spatial resolution when propelled by optical scattering force controlled with an optical fiber probe,which results in precision neural stimulation via precisely activation of membrane mechanosensitive ion channel.Importantly,controllable modulation of a single neuronal cell,even down to subcellular neuronal structures such as dendrites,axons,and soma,can be achieved.This bio-dart can also serve as a drug delivery tool for multifunctional neural stimulation and modulation.Remarkably,our optomechanical bio-darts can also be used for in vivo neural stimulation in larval zebrafish.This strategy provides a novel approach for neural stimulation and modulation with sub-cellular precision,paving the way for high-precision neuronal plasticity and neuromodulation. 展开更多
关键词 stimulation NEURAL precisely
原文传递
Exploring the synergy of the eyebrain connection:neuromodulation approaches for neurodegenerative disorders through transcorneal electrical stimulation
19
作者 Antara Verma Stephen K.Agadagba Leanne Lai-Hang Chan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2097-2098,共2页
The connection and interaction between the eye and the brain are crucial to understanding brain disorders(Marchesi et al.,2021).Both the eye and the brain have a limited regenerative capacity as there are few progenit... The connection and interaction between the eye and the brain are crucial to understanding brain disorders(Marchesi et al.,2021).Both the eye and the brain have a limited regenerative capacity as there are few progenitor cells,and nerve cells do not replicate.Hence,neurodegeneration implicates irreversible damage to the central nervous system,as observed in several neurodegenerative diseases(Marchesi et al.,2021). 展开更多
关键词 stimulation DEGENERATIVE
下载PDF
Effect of transcranial direct current stimulation on postoperative sleep disturbance in older patients undergoing lower limb major arthroplasty:a prospective,double-blind,pilot,randomised controlled trial
20
作者 Jie Yang Mingshu Tao +12 位作者 Rongguang Liu Jiaxing Fang Chunyan Li Dexian Chen Qi Wei Xingyu Xiong Wenxin Zhao Wen Tan Yuan Han Hongxing Zhang He Liu Song Zhang Junli Cao 《General Psychiatry》 CSCD 2024年第2期224-233,共10页
Background Postoperative sleep disturbance(PSD)is a common and serious postoperative complication and is associated with poor postoperative outcomes.Aims This study aimed to investigate the effect of transcranial dire... Background Postoperative sleep disturbance(PSD)is a common and serious postoperative complication and is associated with poor postoperative outcomes.Aims This study aimed to investigate the effect of transcranial direct current stimulation(tDCS)on PSD in older patients undergoing lower limb major arthroplasty.Methods In this prospective,double-blind,pilot,randomised,sham-controlled trial,patients 65 years and over undergoing lower limb major arthroplasty were randomly assigned to receive active tDCS(a-tDCS)or sham tDCS(s-tDCS).The primary outcomes were the objective sleep measures on postoperative nights(N)1 and N2.Results 116 inpatients were assessed for eligibility,and a total of 92 patients were enrolled;47 received a-tDCS and 45 received s-tDCS.tDCS improved PSD by altering the following sleep measures in the a-tDCS and s-tDCS groups;the respective comparisons were as follows:the promotion of rapid eye movement(REM)sleep time on N1(64.5(33.5-105.5)vs 19.0(0.0,45.0)min,F=20.10,p<0.001)and N2(75.0(36.0-120.8)vs 30.0(1.3-59.3)min,F=12.55,p<0.001);the total sleep time on N1(506.0(408.0-561.0)vs 392.0(243.0-483.5)min,F=14.13,p<0.001)and N2(488.5(455.5-548.5)vs 346.0(286.5-517.5)min,F=7.36,p=0.007);the deep sleep time on N1(130.0(103.3-177.0)vs 42.5(9.8-100.8)min,F=24.4,p<0.001)and N2(103.5(46.0-154.8)vs 57.5(23.3-106.5)min,F=8.4,p=0.004);and the percentages of light sleep and REM sleep on N1 and N2(p<0.05 for each).The postoperative depression and anxiety scores did not differ significantly between the two groups.No significant adverse events were reported.Conclusion In older patients undergoing lower limb major arthroplasty,a single session of anodal tDCS over the left dorsolateral prefrontal cortex showed a potentially prophylactic effect in improving postoperative short-term objective sleep measures.However,this benefit was temporary and was not maintained over time. 展开更多
关键词 SLEEP stimulation POSTOPERATIVE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部