Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effec...Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.展开更多
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr...Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.展开更多
Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, ma...Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae.展开更多
A 1D radially self-consistent model in helicon plasmas has been established to investigate the influence of radial heat conduction on plasma transport and wave propagation.Two kinds of 1D radial fluid models,with and ...A 1D radially self-consistent model in helicon plasmas has been established to investigate the influence of radial heat conduction on plasma transport and wave propagation.Two kinds of 1D radial fluid models,with and without considering heat conduction,have been developed to couple the 1D plasma-wave interaction model,and self-consistent solutions have been obtained.It is concluded that in the low magnetic field range the radial heat conduction plays a moderate role in the transport of helicon plasmas and the importance depends on the application of the helicon source.It influences the local energy balance leading to enhancement of the electron temperature in the bulk region and a decrease in plasma density.The power deposition in the plasma is mainly balanced by collisional processes and axial diffusion,whereas it is compensated by heat conduction in the bulk region and consumed near the boundary.The role of radial heat conduction in the large magnetic field regime becomes negligible and the two fluid models show consistency.The local power balance,especially near the wall,is improved when conductive heat is taken into account.展开更多
Low-rise buildings are susceptible to high-frequency ground motion.The high-frequency ground motions at regional distances are mainly controlled by crustal Lg waves whose amplitudes are typically much larger than thos...Low-rise buildings are susceptible to high-frequency ground motion.The high-frequency ground motions at regional distances are mainly controlled by crustal Lg waves whose amplitudes are typically much larger than those of body waves.In this study,we develop a Lg-wave Q model for the Sichuan and Yunnan region in the frequency band of 0.3–2.0 Hz using regional seismic records of 1166 earthquakes recorded at 152 stations.Comparison between the observed pattern of ground motion from real earthquake and model prediction demonstrates the robustness and effectiveness of our Lg-Q model.Then,assuming that the Lg-wave Q structure is the main factor affecting the propagation of the high-frequency ground motions,we calculate the spatial distributions of high-frequency ground motions from scenario earthquakes at different locations in the region using the average Lg-wave attenuation model over the frequency band of 0.3–2.0 Hz.We also use the Lg-Q model to estimate the distribution of cumulative energy of high-frequency ground motions based on the historical seismicity of the Sichuan and Yunnan region.Results show that the Lg-Q model can be used effectively in estimating the spatial distribution of high-frequency seismic energies and thus can contribute to the assessment of seismic hazard to low-rise buildings.展开更多
In current research,many researchers propose analytical expressions for calculating the packing structure of spherical particles such as DN Model,Compact Model and NLS criterion et al.However,there is still a question...In current research,many researchers propose analytical expressions for calculating the packing structure of spherical particles such as DN Model,Compact Model and NLS criterion et al.However,there is still a question that has not been well explained yet.That is:What is the core factors affecting the thermal conductivity of particles?In this paper,based on the coupled discrete element-finite difference(DE-FD)method and spherical aluminum powder,the relationship between the parameters and the thermal conductivity of the powder(ETC_(p))is studied.It is found that the key factor that can described the change trend of ETC_(p) more accurately is not the materials of the powder but the average contact area between particles(a_(ave))which also have a close nonlinear relationship with the average particle size d_(50).Based on this results,the expression for calculating the ETC_(p) of the sphere metal powder is successfully reduced to only one main parameter d_(50)and an efficient calculation model is proposed which can applicate both in room and high temperature and the corresponding error is less than 20.9%in room temperature.Therefore,in this study,based on the core factors analyzation,a fast calculation model of ETC_(p) is proposed,which has a certain guiding significance in the field of thermal field simulation.展开更多
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f...This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.展开更多
According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are construc...According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are constructed by using fractional calculus theory. Firstly, the parameter conditions that ensure that the converter working in CCM is given and transfer functions are derived. Also, the inductor current and the output voltage are analyzed. Then the difference between the mathematical model and the circuit model are analyzed, and the effect of fractional order is studied by comparing the integer order with fractional order model. Finally, the dynamic behavior of the current-controlled Buck converter is investigated. Simulation experiments are achieved via the use of Matlab/Simulink. The experimental results verify the correctness of theoretical analysis, the order should be taken as a significant parameter. When the order is taken as a bifurcation parameter, the dynamic behavior of the converter will be affected and bifurcation points will be changed as order varies.展开更多
As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure...As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.展开更多
A new type of high-frequency micro-pump was designed, in which GMA (Giant Magnetostrictive Actuator) was employed to replace the traditional motor drive, owing to its significant characteristics of fast response, high...A new type of high-frequency micro-pump was designed, in which GMA (Giant Magnetostrictive Actuator) was employed to replace the traditional motor drive, owing to its significant characteristics of fast response, high accuracy, easily miniaturized and so on. Both the mathematic and simulation models of the micro-pump were built.A set of raw data was used for simulation studies.The results show that the micro-pump based on GMA has achieved the features of high-frequency response and high accuracy, theoretically displaying the performance merits of a giant magnetostrictive material (GMM) high-frequency micro-pump.展开更多
Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer con...Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer conductance. Leuning in his revised Ball's model replaced relative humidity with VPD s (the vapor pressure deficit from stomatal pore to leaf surface) and thereby made the relation with transpiration more straightforward, and made it possible for the regulation of transpiration and the influence of boundary layer conductance to be integrated into the combined model. If the differences in water vapor and CO 2 concentration between leaf and ambient air are considered, VPD s , the evaporative demand, is influenced by stomatal and boundary layer conductance. The physiological responses of photosynthesis, transpiration, and stomatal function, and the changes of intercellular CO 2 and water use efficiency to environmental factors, such as wind speed, photon flux density, leaf temperature and ambient CO 2, are analyzed. It is shown that if the boundary layer conductance drops to a level comparable with stomatal conductance, the results of simulation by the model presented here differ significantly from those by the previous model, and, in some cases, are more realistic than the latter.展开更多
The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical mode...The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces.展开更多
Theoretical and empirical models for predicting the thermal conductivity of polymer composites were summarized since the 1920s.The effects of particle shape,filler amount,dispersion state of fillers,and interfacial th...Theoretical and empirical models for predicting the thermal conductivity of polymer composites were summarized since the 1920s.The effects of particle shape,filler amount,dispersion state of fillers,and interfacial thermal barrier on the thermal conductivity of filled polymer composites were investigated,and the agreement of experimental data with theoretical models in literatures was discussed.Silica with high thermal conductivity was chosen to mix with polyvinyl-acetate (EVA) copolymer to prepare SiO2/EVA co-films.Experimental data of the co-films' thermal conductivity were compared with some classical theoretical and empirical models.The results show that Agari's model,the mixed model,and the percolation model can predict well the thermal conductivity of SiO2/EVA co-films.展开更多
In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical facto...In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical factor that induces HFR. The frequency coupling affects the impedance characteristics of an MMC and further deteriorates system stability. Therefore, in this paper, a multi-input multi-output admittance model of an MMC-HVDC system is developed to analyze its frequency characteristics. The effects of current loop, power loop, phase-locked loop, and operating point on the MMC frequency coupling degree are analyzed in detail. Meanwhile, to further suppress HFR in the MMC-HVDC system, an enhanced impedance reshaping control strategy based on the equivalent single-input single-output impedance model is proposed. Finally, the accuracy of the enhanced impedance model and the effectiveness of the impedance reshaping control are verified by electromagnetic transient simulations in PSCAD.展开更多
The present article provides supplementary information of previous works of analytic models for predicting conductivity enhancements of carbon nanotube composites. The models, though fairly simple, are able to take ac...The present article provides supplementary information of previous works of analytic models for predicting conductivity enhancements of carbon nanotube composites. The models, though fairly simple, are able to take account of the effects of conductivity anisotropy, nonstraightness, and aspect ratio of the CNT additives on the conductivity enhancement of the composite and to give predictions agreeing well with existing experimental data. The omitted detailed derivation of this model is demonstrated in the present article with a more systematical analysis, which may help with further development in this direction. Furthermore, the effects of various orientation distributions of CNTs are reported here for the first time. The information may be useful in design or fabrication technology of CNT composites for better or specified conductivities.展开更多
Taking the Lindemann model as a sample system in which there exist chemical reactions, diffusion and heat conduction, we found the theoretical framework of linear stability analysis for a unidimensional nonhomogeneous...Taking the Lindemann model as a sample system in which there exist chemical reactions, diffusion and heat conduction, we found the theoretical framework of linear stability analysis for a unidimensional nonhomogeneous two-variable system with one end subject to Dirichlet conditions, while the other end no-flux conditions. Furthermore, the conditions for the emergence of temperature waves are found out by the linear stability analysis and verified by a diagram for successive steps of evolution of spatial profile of temperature during a period that is plotted by numerical simulations on a computer. Without doubt, these results are in favor of the heat balance in chemical reactor designs.展开更多
We build a fractional dual-phase-lag model and the corresponding bioheat transfer equation, which we use to interpret the experiment results for processed meat that have been explained by applying the hyperbolic condu...We build a fractional dual-phase-lag model and the corresponding bioheat transfer equation, which we use to interpret the experiment results for processed meat that have been explained by applying the hyperbolic conduction. Analytical solutions expressed by H-functions are obtained by using the Laplace and Fourier transforms method. The inverse fractional dual-phase-lag heat conduction problem for the simultaneous estimation of two relaxation times and orders of fractionality is solved by applying the nonlinear least-square method. The estimated model parameters are given. Finally, the measured and the calculated temperatures versus time are compared and discussed. Some numerical examples are also given and discussed.展开更多
Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can grea...Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.展开更多
The present work is devoted to the determination of linear effective thermal conductivity of porous rocks characterized by an assemblage of grains(oolites) coated by a matrix. Two distinct classes of pores, i.e.microp...The present work is devoted to the determination of linear effective thermal conductivity of porous rocks characterized by an assemblage of grains(oolites) coated by a matrix. Two distinct classes of pores, i.e.micropores or intra oolitic pores(oolite porosity) and mesopores or inter oolitic pores(inter oolite porosity), are taken into account. The overall porosity is supposed to be connected and decomposed into oolite porosity and matrix porosity. Within the framework of Hashin composite sphere assemblage(CSA)models, a two-step homogenization method is developed. At the first homogenization step, pores are assembled into two layers by using self-consistent scheme(SCS). At the second step, the two porous layers constituting the oolites and the matrix are assembled by using generalized self-consistent scheme(GSCS) and referred to as three-phase model. Numerical results are presented for data representative of a porous oolitic limestone. It is shown that the influence of porosity on the overall thermal conductivity of such materials may be significant.展开更多
Conductivities of lithium bis(oxalato)borate (LiBOB)-ethyl carbonate (EC)/diethyl carbonaten (DEC) electrolytes at 25℃ and 50℃ were studied. The electrolyte component with the highest conductivity at each te...Conductivities of lithium bis(oxalato)borate (LiBOB)-ethyl carbonate (EC)/diethyl carbonaten (DEC) electrolytes at 25℃ and 50℃ were studied. The electrolyte component with the highest conductivity at each temperature was obtained through changing the concentration of LiBOB and the ratio of EC/DEC. The mass triangle model was applied to calculate the conductivity of Li- BOB-EC/DEC ternary system at 25℃ and 50℃. The results show that the calculated and experimental results have reached a good agreement. Therefore, it is expected that the experimental work can be vastly reduced by introducing the mass triangle model.展开更多
文摘Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.
基金Supported by Science Center for Gas Turbine Project of China (Grant No.P2022-B-IV-014-001)Frontier Leading Technology Basic Research Special Project of Jiangsu Province of China (Grant No.BK20212007)the BIT Research and Innovation Promoting Project of China (Grant No.2022YCXZ019)。
文摘Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51764046 and 52160013)the Inner Mongolia Autonomous Region Postgraduate Research Innovation Project of China (Grant No. S20231165Z)the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region of China (Grant Nos. 2023RCTD016 and 2024RCTD008)。
文摘Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae.
基金National Natural Science Foundation of China(No.51907039)Shenzhen Technology Project(Nos.JCYJ20190806142603534 and ZDSYS201707280904031)+1 种基金ESPEOS project(No.PID2019108034RB-I00/AEI/10.13039/501100011033)funded by the Agencia Estatal de Investigacion(Spanish National Research Agency)。
文摘A 1D radially self-consistent model in helicon plasmas has been established to investigate the influence of radial heat conduction on plasma transport and wave propagation.Two kinds of 1D radial fluid models,with and without considering heat conduction,have been developed to couple the 1D plasma-wave interaction model,and self-consistent solutions have been obtained.It is concluded that in the low magnetic field range the radial heat conduction plays a moderate role in the transport of helicon plasmas and the importance depends on the application of the helicon source.It influences the local energy balance leading to enhancement of the electron temperature in the bulk region and a decrease in plasma density.The power deposition in the plasma is mainly balanced by collisional processes and axial diffusion,whereas it is compensated by heat conduction in the bulk region and consumed near the boundary.The role of radial heat conduction in the large magnetic field regime becomes negligible and the two fluid models show consistency.The local power balance,especially near the wall,is improved when conductive heat is taken into account.
基金supported by the China Postdoctoral Science Foundation
文摘Low-rise buildings are susceptible to high-frequency ground motion.The high-frequency ground motions at regional distances are mainly controlled by crustal Lg waves whose amplitudes are typically much larger than those of body waves.In this study,we develop a Lg-wave Q model for the Sichuan and Yunnan region in the frequency band of 0.3–2.0 Hz using regional seismic records of 1166 earthquakes recorded at 152 stations.Comparison between the observed pattern of ground motion from real earthquake and model prediction demonstrates the robustness and effectiveness of our Lg-Q model.Then,assuming that the Lg-wave Q structure is the main factor affecting the propagation of the high-frequency ground motions,we calculate the spatial distributions of high-frequency ground motions from scenario earthquakes at different locations in the region using the average Lg-wave attenuation model over the frequency band of 0.3–2.0 Hz.We also use the Lg-Q model to estimate the distribution of cumulative energy of high-frequency ground motions based on the historical seismicity of the Sichuan and Yunnan region.Results show that the Lg-Q model can be used effectively in estimating the spatial distribution of high-frequency seismic energies and thus can contribute to the assessment of seismic hazard to low-rise buildings.
基金Supported by National Natural Science Foundation of China (Grant No.51975459)Shaanxi Provincial Natural Science Foundation of China (Grant No.2017JM5046)。
文摘In current research,many researchers propose analytical expressions for calculating the packing structure of spherical particles such as DN Model,Compact Model and NLS criterion et al.However,there is still a question that has not been well explained yet.That is:What is the core factors affecting the thermal conductivity of particles?In this paper,based on the coupled discrete element-finite difference(DE-FD)method and spherical aluminum powder,the relationship between the parameters and the thermal conductivity of the powder(ETC_(p))is studied.It is found that the key factor that can described the change trend of ETC_(p) more accurately is not the materials of the powder but the average contact area between particles(a_(ave))which also have a close nonlinear relationship with the average particle size d_(50).Based on this results,the expression for calculating the ETC_(p) of the sphere metal powder is successfully reduced to only one main parameter d_(50)and an efficient calculation model is proposed which can applicate both in room and high temperature and the corresponding error is less than 20.9%in room temperature.Therefore,in this study,based on the core factors analyzation,a fast calculation model of ETC_(p) is proposed,which has a certain guiding significance in the field of thermal field simulation.
文摘This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.
基金Sponsored by the National Natural Sciences Foundation of China(Grant No.61201227)
文摘According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are constructed by using fractional calculus theory. Firstly, the parameter conditions that ensure that the converter working in CCM is given and transfer functions are derived. Also, the inductor current and the output voltage are analyzed. Then the difference between the mathematical model and the circuit model are analyzed, and the effect of fractional order is studied by comparing the integer order with fractional order model. Finally, the dynamic behavior of the current-controlled Buck converter is investigated. Simulation experiments are achieved via the use of Matlab/Simulink. The experimental results verify the correctness of theoretical analysis, the order should be taken as a significant parameter. When the order is taken as a bifurcation parameter, the dynamic behavior of the converter will be affected and bifurcation points will be changed as order varies.
基金supported by the National Natural Science Foundation of China(No.62293481,No.62071058)。
文摘As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.
基金Supported by the National Natural Science Foundation of China(59835160)the National Natural Science Foundation of Anhui Province(070414268x)
文摘A new type of high-frequency micro-pump was designed, in which GMA (Giant Magnetostrictive Actuator) was employed to replace the traditional motor drive, owing to its significant characteristics of fast response, high accuracy, easily miniaturized and so on. Both the mathematic and simulation models of the micro-pump were built.A set of raw data was used for simulation studies.The results show that the micro-pump based on GMA has achieved the features of high-frequency response and high accuracy, theoretically displaying the performance merits of a giant magnetostrictive material (GMM) high-frequency micro-pump.
文摘Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer conductance. Leuning in his revised Ball's model replaced relative humidity with VPD s (the vapor pressure deficit from stomatal pore to leaf surface) and thereby made the relation with transpiration more straightforward, and made it possible for the regulation of transpiration and the influence of boundary layer conductance to be integrated into the combined model. If the differences in water vapor and CO 2 concentration between leaf and ambient air are considered, VPD s , the evaporative demand, is influenced by stomatal and boundary layer conductance. The physiological responses of photosynthesis, transpiration, and stomatal function, and the changes of intercellular CO 2 and water use efficiency to environmental factors, such as wind speed, photon flux density, leaf temperature and ambient CO 2, are analyzed. It is shown that if the boundary layer conductance drops to a level comparable with stomatal conductance, the results of simulation by the model presented here differ significantly from those by the previous model, and, in some cases, are more realistic than the latter.
基金supported by National Natural Science Foundation of China (Grant Nos. 50975276,50475164)National Basic Research Program of China (973 Program,Grant No. 2007CB607605)+1 种基金Doctoral Programs Foundation of Ministry of Education of China (Grant No.200802900513)Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD)
文摘The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces.
基金supported by the High-Tech Research and Development Program of China (863 Program) (No.2006AA050203)
文摘Theoretical and empirical models for predicting the thermal conductivity of polymer composites were summarized since the 1920s.The effects of particle shape,filler amount,dispersion state of fillers,and interfacial thermal barrier on the thermal conductivity of filled polymer composites were investigated,and the agreement of experimental data with theoretical models in literatures was discussed.Silica with high thermal conductivity was chosen to mix with polyvinyl-acetate (EVA) copolymer to prepare SiO2/EVA co-films.Experimental data of the co-films' thermal conductivity were compared with some classical theoretical and empirical models.The results show that Agari's model,the mixed model,and the percolation model can predict well the thermal conductivity of SiO2/EVA co-films.
基金supported by National Natural Science Foundation of China(No.52277102)。
文摘In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical factor that induces HFR. The frequency coupling affects the impedance characteristics of an MMC and further deteriorates system stability. Therefore, in this paper, a multi-input multi-output admittance model of an MMC-HVDC system is developed to analyze its frequency characteristics. The effects of current loop, power loop, phase-locked loop, and operating point on the MMC frequency coupling degree are analyzed in detail. Meanwhile, to further suppress HFR in the MMC-HVDC system, an enhanced impedance reshaping control strategy based on the equivalent single-input single-output impedance model is proposed. Finally, the accuracy of the enhanced impedance model and the effectiveness of the impedance reshaping control are verified by electromagnetic transient simulations in PSCAD.
文摘The present article provides supplementary information of previous works of analytic models for predicting conductivity enhancements of carbon nanotube composites. The models, though fairly simple, are able to take account of the effects of conductivity anisotropy, nonstraightness, and aspect ratio of the CNT additives on the conductivity enhancement of the composite and to give predictions agreeing well with existing experimental data. The omitted detailed derivation of this model is demonstrated in the present article with a more systematical analysis, which may help with further development in this direction. Furthermore, the effects of various orientation distributions of CNTs are reported here for the first time. The information may be useful in design or fabrication technology of CNT composites for better or specified conductivities.
文摘Taking the Lindemann model as a sample system in which there exist chemical reactions, diffusion and heat conduction, we found the theoretical framework of linear stability analysis for a unidimensional nonhomogeneous two-variable system with one end subject to Dirichlet conditions, while the other end no-flux conditions. Furthermore, the conditions for the emergence of temperature waves are found out by the linear stability analysis and verified by a diagram for successive steps of evolution of spatial profile of temperature during a period that is plotted by numerical simulations on a computer. Without doubt, these results are in favor of the heat balance in chemical reactor designs.
基金supported by the National Natural Science Foundation of China(Grant Nos.11102102,11472161,and 91130017)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2014AQ015)the Independent Innovation Foundation of Shandong University,China(Grant No.2013ZRYQ002)
文摘We build a fractional dual-phase-lag model and the corresponding bioheat transfer equation, which we use to interpret the experiment results for processed meat that have been explained by applying the hyperbolic conduction. Analytical solutions expressed by H-functions are obtained by using the Laplace and Fourier transforms method. The inverse fractional dual-phase-lag heat conduction problem for the simultaneous estimation of two relaxation times and orders of fractionality is solved by applying the nonlinear least-square method. The estimated model parameters are given. Finally, the measured and the calculated temperatures versus time are compared and discussed. Some numerical examples are also given and discussed.
基金supported by the National Natural Science Foundation of China(Grants 11472313,11232015,and 11572355)the Guangdong Province Research Fund for Applied Research
文摘Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.
基金support from TAMER (Trans-Atlantic Micromechanics Evolving Research) European Project (materials containing inhomogeneities of diverse physical properties, shapes and orientations)FP7 Project TAMER IRSES-GA2013-610547
文摘The present work is devoted to the determination of linear effective thermal conductivity of porous rocks characterized by an assemblage of grains(oolites) coated by a matrix. Two distinct classes of pores, i.e.micropores or intra oolitic pores(oolite porosity) and mesopores or inter oolitic pores(inter oolite porosity), are taken into account. The overall porosity is supposed to be connected and decomposed into oolite porosity and matrix porosity. Within the framework of Hashin composite sphere assemblage(CSA)models, a two-step homogenization method is developed. At the first homogenization step, pores are assembled into two layers by using self-consistent scheme(SCS). At the second step, the two porous layers constituting the oolites and the matrix are assembled by using generalized self-consistent scheme(GSCS) and referred to as three-phase model. Numerical results are presented for data representative of a porous oolitic limestone. It is shown that the influence of porosity on the overall thermal conductivity of such materials may be significant.
基金supported by the National Natural Science Foundation of China(No.50472093)
文摘Conductivities of lithium bis(oxalato)borate (LiBOB)-ethyl carbonate (EC)/diethyl carbonaten (DEC) electrolytes at 25℃ and 50℃ were studied. The electrolyte component with the highest conductivity at each temperature was obtained through changing the concentration of LiBOB and the ratio of EC/DEC. The mass triangle model was applied to calculate the conductivity of Li- BOB-EC/DEC ternary system at 25℃ and 50℃. The results show that the calculated and experimental results have reached a good agreement. Therefore, it is expected that the experimental work can be vastly reduced by introducing the mass triangle model.