The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode(CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established....Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode(CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in i_L–v_C plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that,with the increase of reference current I_(ref), the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding Irefdecreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller.展开更多
The accuracy of the measured current is a preeminent parameter for Current Control based Power Converter applications to ensure genuine operation of the designed converter.The current measurement accuracy can be affec...The accuracy of the measured current is a preeminent parameter for Current Control based Power Converter applications to ensure genuine operation of the designed converter.The current measurement accuracy can be affected by several parameters which includes the type of technology used,components used for the selected technology,aging,usage,operating and environmental conditions.The effect of gain resistors and their manufacturing tolerances on differential amplifier-based buck converter current measurement is investigated in this work.The analysis mainly focused on the output voltage variation and its accuracy with respect to the change in gain resistance tolerances.The gain resistors with 5%,1%,0.5%and 0.1%manufacturing tolerances taken for the worst-case analysis and the calculated performance results are compared and verified with the simula-tion results.The Operational amplifiers(Op-Amp)for high frequency power con-verter applications must operate in a high frequency noise environment and the intended current measuring system must manage common mode noise distur-bances paired with the signal to be measured.Based on the Common Mode Rejec-tion Ratio(CMRR)the common mode voltages and noise signals will effectively getfiltered out.Lesser CMRR results in lower common mode signal rejection,resulting in poor precision and noise rejection.In differential amplifiers,the CMRR predominantly depends on gain resistors.So,the variations in Common Mode Rejection Ratio due to gain resistor tolerances also analyzed and compared with the output voltage variations.Besides the effects of resistor tolerances,this paper also examines the effect of Op-Amp offset voltage on output accuracy spe-cifically for low magnitude input currents.The obtained results from this analysis clearly shows that the gain resistors with 0.1%tolerance gives maximum accuracy with improved CMRR and accuracy at low magnitude input currents will get well improved by using Op-Amps with Low Offset voltage specifications.展开更多
The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on th...The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability.展开更多
A bridge arm prototype of ITER poloidal field (PF) converter modules has been designed and fabricated. Non-cophase counter parallel connection is chosen as the arm structure of the prototype. Among all factors affec...A bridge arm prototype of ITER poloidal field (PF) converter modules has been designed and fabricated. Non-cophase counter parallel connection is chosen as the arm structure of the prototype. Among all factors affecting current sharing, arm structure is the main one. During the design of the arm prototype, a novel method based on inductance matrixes is employed to improve the current sharing of the bridge arm. The test results on the prototype show that the current sharing performance of the arm prototype is much better than relevant design requirement, and that the matrix method is very effective to analyze and solve the current sharing problems of thyristor converters.展开更多
A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequenc...A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequency con-verter is obtained with low switching frequency converter. It is very promising in current-source APF that adopt super-conducting magnetic energy storage component.展开更多
A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can i...A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current. Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.展开更多
The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and compli...The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution.展开更多
The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor a...The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.展开更多
A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a...A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.展开更多
A novel software implementation for current polarity detection and current compensation is presented. For a three-phase zero-voltage soft-switching (ZVS) PWM converter based on phase and amplitude control (PAC), w...A novel software implementation for current polarity detection and current compensation is presented. For a three-phase zero-voltage soft-switching (ZVS) PWM converter based on phase and amplitude control (PAC), when saw-tooth carriers with alternate positive and negative slopes are adopted, the positive or negative slopes are chosen according to the phase current polarity. Since polarity reversal causes current distortion, current at the instant of reversal should be compensated for. Based on the characteristic of unity power factor converter in rectification and regeneration modes, a software implementation for current polarity detection is proposed. Distortion of current zero-crossing caused by using saw-tooth carriers with alternate positive and negative slopes is analyzed, and the relevant compensation method is proposed. Experimental study with a 1.5 kW device shows that phase current has a small harmonic content and power factor is high both in rectification and regeneration modes.展开更多
In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched v...In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.展开更多
An analytic closed-form based loop compensator for direct current-direct current (DC-DC) buckboost converter in discontinuous conduction with peak current-mode control is proposed to increase efficiency of the desir...An analytic closed-form based loop compensator for direct current-direct current (DC-DC) buckboost converter in discontinuous conduction with peak current-mode control is proposed to increase efficiency of the desired process through systemization. As a result, the process saves a lot of computation time that can be translated into design cost savings. Finally, the output voltage regulation in the presence of audio susceptibility and output impedance is shown for verifying.展开更多
Due to the highly demand on the renewable energy sources as a free and a clean power resource, extracting energy from unsteady flow using marine and tidal current turbines has a distinct focusing nowadays. For their r...Due to the highly demand on the renewable energy sources as a free and a clean power resource, extracting energy from unsteady flow using marine and tidal current turbines has a distinct focusing nowadays. For their resource characteristic, extracting energy from marine/tidal current needs a simple and robust converter, which could overcome the drawbacks of the mechanical system such as gearbox and enhance conversion system stability. In this paper a new AC-DC-AC conversion system has been proposed. The new conversion system contains a middle stage DC-DC boost converter, which boost the generated rectified DC voltage higher enough that can enable the PWM inverter to generate the required voltage with the synchronized frequency. In order to investigate the efficient performance of the proposed conversion system especially at low current speed compared to the conventional one, different operating conditions have been studied. Moreover, the effect of including boost converter on the THD (total harmonic distortion) has also been checked. The new conversion system presents its capability to enhance and improve system performance not only with low current speed but also with high current speed.展开更多
To improve the vehicle dynamic performance and ultra-capacitor operating circumstance,this paper studied the multi-current-two-quadrant converter applied to drive high power DC motor in ultra-capacitor electric bus(UC...To improve the vehicle dynamic performance and ultra-capacitor operating circumstance,this paper studied the multi-current-two-quadrant converter applied to drive high power DC motor in ultra-capacitor electric bus(UCEB).Compared with normal current-two-quadrant converter,the multi-current-two-quadrant converter can reduce the motor armature current ripple and the ultra-capacitor current ripple.Moreover,it improves power capabilities,reliability and fault tolerant capability of driving system.After analyzing the structure and working principle of the multi-current-two-quadrant converter,the expressions of armature current ripple and the quantitative relationships between the ultra-capacitor power loss and duty cycle were derived.The simulation and experimental results showed that the multi-current-two-quadrant converter has great advantages in reducing the armature current ripple and ultra-capacitor power loss,which can improve the vehicle performance and overall efficiency.展开更多
The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the ...The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.展开更多
This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current...This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current(DC)with the boost converter.Power Factor Correction(PFC)is progressively significant to achieve high energy efficiency.The overall system efficiency can be increased as the bridgeless topology has less conduction losses from rectifying bridges.Also,the bridgeless and interleaved techniques are incorporated in this study to achieve better performance.The performance of the system is analyzed on both current control and sensor-less techniques.Different controllers such as Proportional Integral(PI)control,peak current control,Non-Linear Carrier(NLC)control,and sensor-less current control are integrated.All the above controllers are implemented using MATrix LABoratory(MATLAB)/SIMULINK.The performance parameter,namely Power Factor(PF),Total Harmonic Distortion(THD),is computed for both open loop and closed loop condition.The sensor-less current control method is implemented using the DsPIC30F2010 controller.The circuit performance is also verified from the simulation and hardware results.The proposed controller has inbuilt Analog-to-Digital Converter(ADC),Digital-to-Analog Converter(DAC),Pulse Width Modulation(PWM)generator,and provides fast responses.展开更多
A new cycle-by-cycle control flyback converter with primary side detection and peak current mode control is proposed and its dynamic characteristics are analyzed. The flyback converter is verified by the OrCAD simulat...A new cycle-by-cycle control flyback converter with primary side detection and peak current mode control is proposed and its dynamic characteristics are analyzed. The flyback converter is verified by the OrCAD simulator. The main advantages of this converter over the conventional one are simplicity, small size, rapid regulating and no sensing control signals over the isolation barrier. The circuit is suitable for digital control implementations.展开更多
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.
基金Project supported by the National Natural Science Foundation of China(Grant No.61376029)the Fundamental Research Funds for the Central Universities,Chinathe College Graduate Research and Innovation Program of Jiangsu Province,China(Grant No.SJLX15 0092)
文摘Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode(CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in i_L–v_C plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that,with the increase of reference current I_(ref), the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding Irefdecreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller.
文摘The accuracy of the measured current is a preeminent parameter for Current Control based Power Converter applications to ensure genuine operation of the designed converter.The current measurement accuracy can be affected by several parameters which includes the type of technology used,components used for the selected technology,aging,usage,operating and environmental conditions.The effect of gain resistors and their manufacturing tolerances on differential amplifier-based buck converter current measurement is investigated in this work.The analysis mainly focused on the output voltage variation and its accuracy with respect to the change in gain resistance tolerances.The gain resistors with 5%,1%,0.5%and 0.1%manufacturing tolerances taken for the worst-case analysis and the calculated performance results are compared and verified with the simula-tion results.The Operational amplifiers(Op-Amp)for high frequency power con-verter applications must operate in a high frequency noise environment and the intended current measuring system must manage common mode noise distur-bances paired with the signal to be measured.Based on the Common Mode Rejec-tion Ratio(CMRR)the common mode voltages and noise signals will effectively getfiltered out.Lesser CMRR results in lower common mode signal rejection,resulting in poor precision and noise rejection.In differential amplifiers,the CMRR predominantly depends on gain resistors.So,the variations in Common Mode Rejection Ratio due to gain resistor tolerances also analyzed and compared with the output voltage variations.Besides the effects of resistor tolerances,this paper also examines the effect of Op-Amp offset voltage on output accuracy spe-cifically for low magnitude input currents.The obtained results from this analysis clearly shows that the gain resistors with 0.1%tolerance gives maximum accuracy with improved CMRR and accuracy at low magnitude input currents will get well improved by using Op-Amps with Low Offset voltage specifications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61371033)the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China(Grant No.142027)+1 种基金the Sichuan Provincial Youth Science and Technology Fund,China(Grant Nos.2014JQ0015and 2013JQ0033)the Fundamental Research Funds for the Central Universities,China(Grant No.SWJTU11CX029)
文摘The discrete iterative map model of peak current-mode controlled buck converter with constant current load(CCL),containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability.
文摘A bridge arm prototype of ITER poloidal field (PF) converter modules has been designed and fabricated. Non-cophase counter parallel connection is chosen as the arm structure of the prototype. Among all factors affecting current sharing, arm structure is the main one. During the design of the arm prototype, a novel method based on inductance matrixes is employed to improve the current sharing of the bridge arm. The test results on the prototype show that the current sharing performance of the arm prototype is much better than relevant design requirement, and that the matrix method is very effective to analyze and solve the current sharing problems of thyristor converters.
文摘A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequency con-verter is obtained with low switching frequency converter. It is very promising in current-source APF that adopt super-conducting magnetic energy storage component.
文摘A new type of variable polarity welding power modulated with high-frequency pulse current is developed. Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current. Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.
基金This work was partially supported by the National Natural Science Foundation of China(11847104)General Program of National Natural Science Foundation of China(51977124)+2 种基金Shandong Natural Science Foundation(ZR2019QEE001)Natural Science Foundation of Jiangsu Province(BK20190204)National Distinguished Expert(Youth Talent)Program of China(31390089963058)。
文摘The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution.
基金supported in part by the Jiangsu Natural Science Foundation of China under Grant BK20180013in part by the Shenzhen Science and Technology Innovation Committee(STIC)under Grant JCYJ20180306174439784.
文摘The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.
文摘A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.
基金Project supported by Shanghai Leading Academic DisciplineProject (Grant No .T0103) ,and Shanghai Post Doctoral Scienti-fic Research (Grant No .05R214122)
文摘A novel software implementation for current polarity detection and current compensation is presented. For a three-phase zero-voltage soft-switching (ZVS) PWM converter based on phase and amplitude control (PAC), when saw-tooth carriers with alternate positive and negative slopes are adopted, the positive or negative slopes are chosen according to the phase current polarity. Since polarity reversal causes current distortion, current at the instant of reversal should be compensated for. Based on the characteristic of unity power factor converter in rectification and regeneration modes, a software implementation for current polarity detection is proposed. Distortion of current zero-crossing caused by using saw-tooth carriers with alternate positive and negative slopes is analyzed, and the relevant compensation method is proposed. Experimental study with a 1.5 kW device shows that phase current has a small harmonic content and power factor is high both in rectification and regeneration modes.
文摘In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.
文摘An analytic closed-form based loop compensator for direct current-direct current (DC-DC) buckboost converter in discontinuous conduction with peak current-mode control is proposed to increase efficiency of the desired process through systemization. As a result, the process saves a lot of computation time that can be translated into design cost savings. Finally, the output voltage regulation in the presence of audio susceptibility and output impedance is shown for verifying.
文摘Due to the highly demand on the renewable energy sources as a free and a clean power resource, extracting energy from unsteady flow using marine and tidal current turbines has a distinct focusing nowadays. For their resource characteristic, extracting energy from marine/tidal current needs a simple and robust converter, which could overcome the drawbacks of the mechanical system such as gearbox and enhance conversion system stability. In this paper a new AC-DC-AC conversion system has been proposed. The new conversion system contains a middle stage DC-DC boost converter, which boost the generated rectified DC voltage higher enough that can enable the PWM inverter to generate the required voltage with the synchronized frequency. In order to investigate the efficient performance of the proposed conversion system especially at low current speed compared to the conventional one, different operating conditions have been studied. Moreover, the effect of including boost converter on the THD (total harmonic distortion) has also been checked. The new conversion system presents its capability to enhance and improve system performance not only with low current speed but also with high current speed.
基金Sponsored by the Heilongjiang 11th Five-year Key Project of Scientific and Technological(Grant No.GA06A305)
文摘To improve the vehicle dynamic performance and ultra-capacitor operating circumstance,this paper studied the multi-current-two-quadrant converter applied to drive high power DC motor in ultra-capacitor electric bus(UCEB).Compared with normal current-two-quadrant converter,the multi-current-two-quadrant converter can reduce the motor armature current ripple and the ultra-capacitor current ripple.Moreover,it improves power capabilities,reliability and fault tolerant capability of driving system.After analyzing the structure and working principle of the multi-current-two-quadrant converter,the expressions of armature current ripple and the quantitative relationships between the ultra-capacitor power loss and duty cycle were derived.The simulation and experimental results showed that the multi-current-two-quadrant converter has great advantages in reducing the armature current ripple and ultra-capacitor power loss,which can improve the vehicle performance and overall efficiency.
文摘The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.
文摘This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current(DC)with the boost converter.Power Factor Correction(PFC)is progressively significant to achieve high energy efficiency.The overall system efficiency can be increased as the bridgeless topology has less conduction losses from rectifying bridges.Also,the bridgeless and interleaved techniques are incorporated in this study to achieve better performance.The performance of the system is analyzed on both current control and sensor-less techniques.Different controllers such as Proportional Integral(PI)control,peak current control,Non-Linear Carrier(NLC)control,and sensor-less current control are integrated.All the above controllers are implemented using MATrix LABoratory(MATLAB)/SIMULINK.The performance parameter,namely Power Factor(PF),Total Harmonic Distortion(THD),is computed for both open loop and closed loop condition.The sensor-less current control method is implemented using the DsPIC30F2010 controller.The circuit performance is also verified from the simulation and hardware results.The proposed controller has inbuilt Analog-to-Digital Converter(ADC),Digital-to-Analog Converter(DAC),Pulse Width Modulation(PWM)generator,and provides fast responses.
文摘A new cycle-by-cycle control flyback converter with primary side detection and peak current mode control is proposed and its dynamic characteristics are analyzed. The flyback converter is verified by the OrCAD simulator. The main advantages of this converter over the conventional one are simplicity, small size, rapid regulating and no sensing control signals over the isolation barrier. The circuit is suitable for digital control implementations.