期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Embedded Control of LCL Resonant Converter Analysis, Design, Simulation and Experimental Results
1
作者 S. Selvaperumal C. Christober Asir Rajan 《Engineering(科研)》 2009年第1期7-15,共9页
The Objective of this paper is to give more insight into CCM Operation of the LCL Converter to obtain op-timum design using state-space analysis and to verify the results using PSPICE Simulation for wide variation in ... The Objective of this paper is to give more insight into CCM Operation of the LCL Converter to obtain op-timum design using state-space analysis and to verify the results using PSPICE Simulation for wide variation in loading conditions. LCL Resonant Full Bridge Converter (RFB) is a new, high performance DC-DC con-verter. High frequency dc-dc resonant converters are widely used in many space and radar power supplies owing to their small size and lightweight. The limitations of two element resonant topologies can be over-come by adding a third reactive element termed as modified series resonant converter (SRC). A three ele-ment resonant converter capable of driving voltage type load with load independent operation is presented. We have used embedded based triggering circuit and the embedded ‘C’ Program is checked in Keil Software and also triggering circuit is simulated in PSPICE Software. To compare the simulated results with hardware results and designed resonant converter is 200W and the switching frequency is 50 KHz. 展开更多
关键词 Continuous Current Mode high-frequency LINK MOSFET Zero-Current SWITCHING RESONANT converter
下载PDF
High-frequency Resonance Analysis and Impedance Reshaping Control of MMC-HVDC System Based on Frequency Coupling Impedance Model
2
作者 Juanjuan Wang Wei Chen +3 位作者 Yuekun Liu Chuang Fu Yunming Ye Junjie Feng 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期646-657,共12页
In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical facto... In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical factor that induces HFR. The frequency coupling affects the impedance characteristics of an MMC and further deteriorates system stability. Therefore, in this paper, a multi-input multi-output admittance model of an MMC-HVDC system is developed to analyze its frequency characteristics. The effects of current loop, power loop, phase-locked loop, and operating point on the MMC frequency coupling degree are analyzed in detail. Meanwhile, to further suppress HFR in the MMC-HVDC system, an enhanced impedance reshaping control strategy based on the equivalent single-input single-output impedance model is proposed. Finally, the accuracy of the enhanced impedance model and the effectiveness of the impedance reshaping control are verified by electromagnetic transient simulations in PSCAD. 展开更多
关键词 Modular multilevel converter based high-voltage direct current(MMC-HVDC) high-frequency resonance frequency coupling impedance model impedance reshaping control
原文传递
Mechanism Analysis of Additional Damping Control Strategies for the High-frequency Resonance of MMC Connected to AC Grid 被引量:2
3
作者 Yanqi Hou Chongru Liu +1 位作者 Yu Wang Wei Kong 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第3期1173-1181,共9页
High-frequency resonance can occur when a modular multilevel converter(MMC)is inserted into an AC grid.Additional damping control is a relatively low-cost resonance suppression strategy compared to passive damping str... High-frequency resonance can occur when a modular multilevel converter(MMC)is inserted into an AC grid.Additional damping control is a relatively low-cost resonance suppression strategy compared to passive damping strategies.This paper analyzes the influences of a feed-forward voltage filter and feedback current filter for the inner controller for the high-frequency impedance characteristics of the MMC based on a model.Moreover,the mechanism,influencing factors,and limitations of the existing strategy including an additional lowpass filter in the voltage feed-forward stage are investigated.Secondly,a resonance suppression strategy for the inclusion of additional cascaded notch filters in the voltage feed-forward stage is proposed,and its parameter design method and applicable scenarios are analyzed.In addition,this paper analyzes the effects of the inclusion of an additional control in other stages for the inner controller of the MMC.Finally,the correctness of the theoretical analysis and the proposed strategy is verified based on the simulation of an actual project on PSCAD/EMTDC. 展开更多
关键词 Additional damping control strategy additional cascaded notch filters additional low-pass filter modular multilevel converter(MMC) high-frequency resonance
原文传递
Modular Multilevel Converter with Wireless Magnetic Power Decoupling for Three-phase MV Adjustable-speed Drives 被引量:1
4
作者 Mohamed Atef Tawfik Mohammad Sameer Irfan +1 位作者 Ashraf Ahmed Joung-Hu Park 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第5期1497-1507,共11页
In this paper,we propose a modular multilevel converter(MMC)with a wireless magnetic power decoupling approach suitable for medium-voltage high-power variable-speed machine drives.Our proposed power decoupling approac... In this paper,we propose a modular multilevel converter(MMC)with a wireless magnetic power decoupling approach suitable for medium-voltage high-power variable-speed machine drives.Our proposed power decoupling approach is independent of the operating frequency,which solves the issue of wide fluctuations of low-frequency voltage ripple components in submodule(SM)capacitors,especially at low-speed operations without using any ripple power capacitor.Employing wireless magnetic elements reduces the amount of high-voltage insulation between the transformer windings,resulting in a significant reduction in the overall size of the system.The basic idea of our proposed approach is to magnetically couple the instantaneous three-phase ripple power of each of the three adjacent-arm SMs.The proposed MMC is free from low-frequency capacitors,resulting in enhanced system reliability,volume,and lifetime.The operation principles of the proposed MMC are explained,and a control design is introduced.The performance of the proposed scheme was verified via simulation and experimental tests. 展开更多
关键词 Modular multilevel converter power decoupling submodule capacitor voltage ripple variable-speed drives wireless high-frequency transformer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部