A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft swi...A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft switching of two stage cascade converters. It lays technical foundation for high power density, high efficiency and low cost aeronautical static inverter. The operation and design approach of this topology are carefully analyzed and studied. The validity of this topology is verified by simulation and test.展开更多
The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the t...The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.展开更多
A second-order compensation link is adopted to control voltage-controlled inverters(VCIs) in microgrid systems to enhance the performance of the power synchronization process of the inverter. The second-order compensa...A second-order compensation link is adopted to control voltage-controlled inverters(VCIs) in microgrid systems to enhance the performance of the power synchronization process of the inverter. The second-order compensation link is classified as both a real pole compensator(RPC) and a complex pole compensator(CPC) according to the pole position. Given a model for the VCI power output, the design process for the second-order compensation link, which is equipped with an RPC and a CPC, is detailed. Moreover, the frequency-domain compensation effects of the RPC and CPC are analyzed using the root locus and Bode diagrams of the system before and after compensation. Finally, the compensation effects of the two types of second-order compensators are compared with the commonly used high-pass filter using MATLAB/Simulink, which verifies the RPC and CPC strategies. Simulation results show that the two types of compensators designed in this study can effectively increase the system cutting frequency and improve the phase margin in the frequency domain while accelerating the power synchronization process, simultaneously making it smoother and reducing overshoot in the time domain. The RPC has better gain robustness, whereas the CPC has better time constant robustness. By implementing an RPC or a CPC, the dynamic time of the power synchronization compensation strategy is reduced within 0.5 s, and the overshoot is reduced within 10% in the experiments with two inverters.展开更多
文摘A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft switching of two stage cascade converters. It lays technical foundation for high power density, high efficiency and low cost aeronautical static inverter. The operation and design approach of this topology are carefully analyzed and studied. The validity of this topology is verified by simulation and test.
文摘The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.
基金supported by the National Key R&D Program Funding Projects (No.2018YFB1503001)the Science and Technology Plan Project of the Shanghai Science and Technology Commission (No.21DZ1207300)the Industrial Strengthening Program Projects from the Shanghai Municipal Commission of Economy and Informatization (No.GYQJ-2022-1-14)。
文摘A second-order compensation link is adopted to control voltage-controlled inverters(VCIs) in microgrid systems to enhance the performance of the power synchronization process of the inverter. The second-order compensation link is classified as both a real pole compensator(RPC) and a complex pole compensator(CPC) according to the pole position. Given a model for the VCI power output, the design process for the second-order compensation link, which is equipped with an RPC and a CPC, is detailed. Moreover, the frequency-domain compensation effects of the RPC and CPC are analyzed using the root locus and Bode diagrams of the system before and after compensation. Finally, the compensation effects of the two types of second-order compensators are compared with the commonly used high-pass filter using MATLAB/Simulink, which verifies the RPC and CPC strategies. Simulation results show that the two types of compensators designed in this study can effectively increase the system cutting frequency and improve the phase margin in the frequency domain while accelerating the power synchronization process, simultaneously making it smoother and reducing overshoot in the time domain. The RPC has better gain robustness, whereas the CPC has better time constant robustness. By implementing an RPC or a CPC, the dynamic time of the power synchronization compensation strategy is reduced within 0.5 s, and the overshoot is reduced within 10% in the experiments with two inverters.