Single zircons from two trondhjemitic gneisses and two clastic metasedimentary rocks without Eu anomaly of the Kongling high-grade metamorphic terrain are dated by the in situ SHRIMP U-Pb method. The results show that...Single zircons from two trondhjemitic gneisses and two clastic metasedimentary rocks without Eu anomaly of the Kongling high-grade metamorphic terrain are dated by the in situ SHRIMP U-Pb method. The results show that the trondhjemitic magma emplaced at 2947-2903 Ma. Concordant age of as old as 3.3 Ga is present in the detrital zircons from the clastic metasedimentary rocks. Together with the depleted mantle Nd model age (TDM =3.2-3.3 Ga) of the clastic metasedimentary rocks, this documents the presence of Paleoarchean continental crust in the Yangtze craton.展开更多
Geological and petrological studies indicate that three phases of metabasic dykes are present in theTaipingzhai-Jinchangyu area within the high-grade metamorphic terrane of eastern Hebei. Garnet andhornblende in metab...Geological and petrological studies indicate that three phases of metabasic dykes are present in theTaipingzhai-Jinchangyu area within the high-grade metamorphic terrane of eastern Hebei. Garnet andhornblende in metabasic dykes of the second and third phases occur separately, forming two mineral aggregateareas gl+cpx+pl±hy and hb+cpx+pl-hy. P_(H_2O) in the rocks appears to be the main factor controlling theformation of the two aggregate areas. Both were formed simultaneously at the same metamorphic temperature. The second-phase basic dykes underwent metamorphism of pyroxene-granulite facies at a temperature ofsome 825C: later the dykes, together with the third-phase basic dykes experienced metamorphism ofamphibole-granulite facies at a temperature of about 750C under pressure of 0.9GPa.展开更多
The early Precambrian high-grade metamorphosed basement in the Xi Ulanbulang area, central Inner Mongolia of China, is composed mainly of intermediate granulites and charnockitic gneisses. Both types of the rocks are ...The early Precambrian high-grade metamorphosed basement in the Xi Ulanbulang area, central Inner Mongolia of China, is composed mainly of intermediate granulites and charnockitic gneisses. Both types of the rocks are closely associated spatially and temporally, with a gradual variation between them. In order to understand timing of the high-grade metamorphism, we carried out SHRIMP U-Pb dating of zircons of the rocks. Zircons from the granulites and charnockitic gneisses are similar in structure and age. Zircon cores show magmatic zoning and have ages of 2507-2545 Ma. The ages are interpreted as the forming time of protolith of the granulites and charnockitic gneisses, indicating that a strong magmatism existed at that time in the Yinshan Block. The zircon mantles and rims show homogeneous structures and record a strong granulite facies metamorphism event around 2500 Ma, with a time interval between the metamorphism and magamatism being less than 50 Ma. These suggest that the Western Block was similar to the Eastern Block in tectono-thermal timing at the end of the Neoarchean.展开更多
The present study reports and discusses the genesis of zincian chromite in the ultramafic xenoliths from the Dongripali area,Bastar craton,Central India.The zincian chromite is in the ultramafic xenoliths of Bengpal s...The present study reports and discusses the genesis of zincian chromite in the ultramafic xenoliths from the Dongripali area,Bastar craton,Central India.The zincian chromite is in the ultramafic xenoliths of Bengpal supracrustal rock hosted by Neoarchaean Bundeli gneisses.Compositionally zincian chromite shows a range of Cr_(2)O_(3)(39.69 to 51.66 wt%),Al_(2)O_(3)(05.30 wt%to 08.71 wt%),FeO(21.74 wt%to 27.51 wt%),Fe_(2)O_(3)(10.19 wt%to 19.36wt%)with higher ZnO content ranging from 1.73 wt%to 4.08 wt%.Accordingly,their Cr#[Cr/(Cr+Al)]varies in a narrow range from 0.83 to 0.85.Its calculated melt composition supports metamorphic or post-magmatic nature rather than common occurrences such as inclusion in diamonds,meteorites,and association with any sulfide-rich mineralised belt.This reveals that the post-magmatic processes play a vital role in transforming chromite to zincian chromite.The empirical thermometric calculation from chromite,amphibole,and pyroxene support their metamorphic origin and formed during low-P and high-T amphibolite grade facies of metamorphism(~700℃).The Neoarchaean granitic magmatism has a significant role in generating and transferring the heat during contact metamorphism with hydration of ultramafic xenoliths and further alteration,i.e.,serpentinisation.The olivine is a major repository for Mn,Zn,and Co in peridotite/ultramafic;these elements get mobilised during the metamorphism and serpentinisation.This is a possible reason for the mobilisation of zinc and incorporation in the chromite within altered ultramafic.As a result,chromiterich ultramafic xenolith subjected to metamorphic process gets enrichment of Zn and Fe due to elemental exchange.It converts common chromite into zincian chromite,as reported in altered ultramafics elsewhere.展开更多
Whether a typical Archaean greenstone belt exists in China is still a question at issue. A lot of researchers firmly believe that the Jiapigou gold mine area situated on the north margin of N. China platform is a typi...Whether a typical Archaean greenstone belt exists in China is still a question at issue. A lot of researchers firmly believe that the Jiapigou gold mine area situated on the north margin of N. China platform is a typical Archaean granite-greenstone terrain, but the detailed field and indoor work made by the authors in this area combined with the on-the-spot investigation on some typical Archaean greenstone belts in Yilgarn block, W. Australia, show that the Jiapigou area is a typical Archaean high grade metamorphic terrain but not an Archaean greenstone belt. The following is an outline of the main evidence and geological significance for the confirmation.展开更多
基金Ministry of Science and Technology of China (Grant No.1999043202), the National Natural Science Foundation of China (Grant Nos. 49625305, 49573183, 49673184, 49794043), the Northwest University, the Ministry of Education of China and the Australian Res
文摘Single zircons from two trondhjemitic gneisses and two clastic metasedimentary rocks without Eu anomaly of the Kongling high-grade metamorphic terrain are dated by the in situ SHRIMP U-Pb method. The results show that the trondhjemitic magma emplaced at 2947-2903 Ma. Concordant age of as old as 3.3 Ga is present in the detrital zircons from the clastic metasedimentary rocks. Together with the depleted mantle Nd model age (TDM =3.2-3.3 Ga) of the clastic metasedimentary rocks, this documents the presence of Paleoarchean continental crust in the Yangtze craton.
文摘Geological and petrological studies indicate that three phases of metabasic dykes are present in theTaipingzhai-Jinchangyu area within the high-grade metamorphic terrane of eastern Hebei. Garnet andhornblende in metabasic dykes of the second and third phases occur separately, forming two mineral aggregateareas gl+cpx+pl±hy and hb+cpx+pl-hy. P_(H_2O) in the rocks appears to be the main factor controlling theformation of the two aggregate areas. Both were formed simultaneously at the same metamorphic temperature. The second-phase basic dykes underwent metamorphism of pyroxene-granulite facies at a temperature ofsome 825C: later the dykes, together with the third-phase basic dykes experienced metamorphism ofamphibole-granulite facies at a temperature of about 750C under pressure of 0.9GPa.
基金supported by National Natural Science Foundation of China (Grant Nos. 90814006, 40972135)Geological Survey of China (Grant No. 1212010510515)
文摘The early Precambrian high-grade metamorphosed basement in the Xi Ulanbulang area, central Inner Mongolia of China, is composed mainly of intermediate granulites and charnockitic gneisses. Both types of the rocks are closely associated spatially and temporally, with a gradual variation between them. In order to understand timing of the high-grade metamorphism, we carried out SHRIMP U-Pb dating of zircons of the rocks. Zircons from the granulites and charnockitic gneisses are similar in structure and age. Zircon cores show magmatic zoning and have ages of 2507-2545 Ma. The ages are interpreted as the forming time of protolith of the granulites and charnockitic gneisses, indicating that a strong magmatism existed at that time in the Yinshan Block. The zircon mantles and rims show homogeneous structures and record a strong granulite facies metamorphism event around 2500 Ma, with a time interval between the metamorphism and magamatism being less than 50 Ma. These suggest that the Western Block was similar to the Eastern Block in tectono-thermal timing at the end of the Neoarchean.
基金Geological Survey of India,Ministry of Mines,Government of India for funding the opportunity to work in this projects。
文摘The present study reports and discusses the genesis of zincian chromite in the ultramafic xenoliths from the Dongripali area,Bastar craton,Central India.The zincian chromite is in the ultramafic xenoliths of Bengpal supracrustal rock hosted by Neoarchaean Bundeli gneisses.Compositionally zincian chromite shows a range of Cr_(2)O_(3)(39.69 to 51.66 wt%),Al_(2)O_(3)(05.30 wt%to 08.71 wt%),FeO(21.74 wt%to 27.51 wt%),Fe_(2)O_(3)(10.19 wt%to 19.36wt%)with higher ZnO content ranging from 1.73 wt%to 4.08 wt%.Accordingly,their Cr#[Cr/(Cr+Al)]varies in a narrow range from 0.83 to 0.85.Its calculated melt composition supports metamorphic or post-magmatic nature rather than common occurrences such as inclusion in diamonds,meteorites,and association with any sulfide-rich mineralised belt.This reveals that the post-magmatic processes play a vital role in transforming chromite to zincian chromite.The empirical thermometric calculation from chromite,amphibole,and pyroxene support their metamorphic origin and formed during low-P and high-T amphibolite grade facies of metamorphism(~700℃).The Neoarchaean granitic magmatism has a significant role in generating and transferring the heat during contact metamorphism with hydration of ultramafic xenoliths and further alteration,i.e.,serpentinisation.The olivine is a major repository for Mn,Zn,and Co in peridotite/ultramafic;these elements get mobilised during the metamorphism and serpentinisation.This is a possible reason for the mobilisation of zinc and incorporation in the chromite within altered ultramafic.As a result,chromiterich ultramafic xenolith subjected to metamorphic process gets enrichment of Zn and Fe due to elemental exchange.It converts common chromite into zincian chromite,as reported in altered ultramafics elsewhere.
基金Project supported by the National Natural Science Foundation of China
文摘Whether a typical Archaean greenstone belt exists in China is still a question at issue. A lot of researchers firmly believe that the Jiapigou gold mine area situated on the north margin of N. China platform is a typical Archaean granite-greenstone terrain, but the detailed field and indoor work made by the authors in this area combined with the on-the-spot investigation on some typical Archaean greenstone belts in Yilgarn block, W. Australia, show that the Jiapigou area is a typical Archaean high grade metamorphic terrain but not an Archaean greenstone belt. The following is an outline of the main evidence and geological significance for the confirmation.