Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed ...Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed bed(RPB)reactor with excellent mass transfer efficiency.Aiming to be used under the centrifugal filed,a monolithic catalyst Pd/c-Al_(2)O_(3)/nickel foam suiting for the shape and size of the rotor of RPB reactor was prepared by the electrophoretic deposition method.The mechanical strength of the catalyst can meet the requirement of high centrifugal force in the RPB.The hydrogenation selectivity in the RPB reactor using the 3-methyl-1-pentyn-3-ol hydrogenation system was 3–8 times higher than that in a stirred tank reactor under similar conditions.This work proves the feasibility of intensifying the selectivity of hydrogenation process in the RPB reactor.展开更多
NaY Zeolite was synthesized in a rotating packed bed (RPB) for the first time. A Si-A1 gel with a specific composition was used as the structure-directing agent. The as-synthesized NaY Zeolite was characterized with...NaY Zeolite was synthesized in a rotating packed bed (RPB) for the first time. A Si-A1 gel with a specific composition was used as the structure-directing agent. The as-synthesized NaY Zeolite was characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and specific surface area (BET). The characterization result showed that the NaY Zeolite had a particle size of approximately 200 rim, n(SiO2)/n(Al203) ratio of 5.03, crystallinity of 96% and specific surface area of 714 m2/g. The experimental results indicated that the structure of NaY Zeolite was related to the synthesis conditions (such as reactors, crystallization time and so on). The micromixing efficiency was proven to be the most important factor for synthesis of NaY Zeolite in the high-gravity environment in RPB.展开更多
The nanoparticles of the hydrophobic drug of danazol with narrow size distribution are facilely prepared by controlled high-gravity anti-solvent precipitation (HGAP) process. Intensified micromixing and uniform nucl...The nanoparticles of the hydrophobic drug of danazol with narrow size distribution are facilely prepared by controlled high-gravity anti-solvent precipitation (HGAP) process. Intensified micromixing and uniform nucleation environment are created by the high-gravity equipment (rotating packed bed) in carrying out the anti-solvent precipitation process to produce nanoparticles. The average particle size decreases from 55 μm of the raw danazol to 190 nm of the nanoparticles. The Brunauer-Emmett-Teller (BET) surface area sharply increases from 0.66 m^2·g^-1 to 15.08 m^2·g^-l. Accordingly, the dissolution rate is greatly improved. The molecular state, chemical composition, and crystal form of the danazol nanoparticles remains unchanged after processing according to Fourier transform infrared (FTIR) and X-ray diffraction (XRD), The high recovery ratio and continuous production capacity are highly appreciated in industry. Therefore, the HGAP method might offer a general and facile platform for mass production of hydrophobic pharmaceutical danazol particles in nanometer range.展开更多
基金supported by the National Natural Science Foundation of China(22022802 and 91934303).
文摘Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed bed(RPB)reactor with excellent mass transfer efficiency.Aiming to be used under the centrifugal filed,a monolithic catalyst Pd/c-Al_(2)O_(3)/nickel foam suiting for the shape and size of the rotor of RPB reactor was prepared by the electrophoretic deposition method.The mechanical strength of the catalyst can meet the requirement of high centrifugal force in the RPB.The hydrogenation selectivity in the RPB reactor using the 3-methyl-1-pentyn-3-ol hydrogenation system was 3–8 times higher than that in a stirred tank reactor under similar conditions.This work proves the feasibility of intensifying the selectivity of hydrogenation process in the RPB reactor.
基金supported by the National Basic Research Program of China (973 Program)(No. 2004CB217804)the Science and Technology Development Project of PetroChina (050203-01-06)
文摘NaY Zeolite was synthesized in a rotating packed bed (RPB) for the first time. A Si-A1 gel with a specific composition was used as the structure-directing agent. The as-synthesized NaY Zeolite was characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and specific surface area (BET). The characterization result showed that the NaY Zeolite had a particle size of approximately 200 rim, n(SiO2)/n(Al203) ratio of 5.03, crystallinity of 96% and specific surface area of 714 m2/g. The experimental results indicated that the structure of NaY Zeolite was related to the synthesis conditions (such as reactors, crystallization time and so on). The micromixing efficiency was proven to be the most important factor for synthesis of NaY Zeolite in the high-gravity environment in RPB.
基金Supported by the National High Technology Research and Development Program of China (2006AA030202)the Talent Training Program of Beijing (2007B022)
文摘The nanoparticles of the hydrophobic drug of danazol with narrow size distribution are facilely prepared by controlled high-gravity anti-solvent precipitation (HGAP) process. Intensified micromixing and uniform nucleation environment are created by the high-gravity equipment (rotating packed bed) in carrying out the anti-solvent precipitation process to produce nanoparticles. The average particle size decreases from 55 μm of the raw danazol to 190 nm of the nanoparticles. The Brunauer-Emmett-Teller (BET) surface area sharply increases from 0.66 m^2·g^-1 to 15.08 m^2·g^-l. Accordingly, the dissolution rate is greatly improved. The molecular state, chemical composition, and crystal form of the danazol nanoparticles remains unchanged after processing according to Fourier transform infrared (FTIR) and X-ray diffraction (XRD), The high recovery ratio and continuous production capacity are highly appreciated in industry. Therefore, the HGAP method might offer a general and facile platform for mass production of hydrophobic pharmaceutical danazol particles in nanometer range.