期刊文献+
共找到15,959篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads
1
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 Rock bolt PRETENSION Static and dynamic load IMPACT
下载PDF
Failure characterization of fully grouted rock bolts under triaxial testing
2
作者 Hadi Nourizadeh Ali Mirzaghorbanali +3 位作者 Mehdi Serati Elamin Mutaz Kevin McDougall Naj Aziz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期778-789,共12页
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st... Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism. 展开更多
关键词 Rock bolts bolt-grout interface Bond strength Push test Triaxial tests
下载PDF
Stability analysis of tunnel face reinforced with face bolts
3
作者 TIAN Chongming JIANG Yin +3 位作者 YE Fei OUYANG Aohui HAN Xingbo SONG Guifeng 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2445-2461,共17页
Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systemat... Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systematically studied.Based on the theory of linear elastic mechanics,this study delved into the specific mechanisms of bolt reinforcement on the tunnel face in both horizontal and vertical dimensions.It also identified the primary failure types of bolts.Additionally,a design approach for tunnel face bolts that incorporates spatial layout was established using the limit equilibrium method to enhance the conventional wedge-prism model.The proposed model was subsequently validated through various means,and the specific influence of relevant bolt design parameters on tunnel face stability was analyzed.Furthermore,design principles for tunnel face bolts under different geological conditions were presented.The findings indicate that bolt failure can be categorized into three stages:tensile failure,pullout failure,and comprehensive failure.Increasing cohesion,internal friction angle,bolt density,and overlap length can effectively enhance tunnel face stability.Due to significant variations in stratum conditions,tailored design approaches based on specific failure stages are necessary for bolt design. 展开更多
关键词 Highway tunnels Tunnel face Face bolts Limit equilibrium method Slice method
下载PDF
Seismic Reduction and Isolation Design Strategies for Bridges in High-Intensity Earthquake Areas
4
作者 Shengtang Wang 《Journal of Architectural Research and Development》 2024年第1期68-74,共7页
High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negativel... High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas. 展开更多
关键词 high-intensity earthquake areas Rubber isolation Seismic reinforcement technology
下载PDF
Analysis of the Risk of Water Breakout in the Bottom Plate of High-Intensity Mining of Extra-Thick Coal Seams
5
作者 Shuo Wang Hongdong Kang Xinchen Wang 《Journal of Geoscience and Environment Protection》 2024年第5期81-91,共11页
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni... In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard. 展开更多
关键词 Extra-Thick Coal Seam high-intensity Mining Microseismic Monitoring Water-Surge Hazard Borehole Peeping
下载PDF
A hardening load transfer function for rock bolts and its calibration using distributed fiber optic sensing 被引量:2
6
作者 Assaf Klar Ori Nissim Itai Elkayam 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2816-2830,共15页
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o... Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior. 展开更多
关键词 Rock bolts Distributed fiber optic sensing Pull-out tests Load transfer function Hardening model
下载PDF
GOAT:a simulation code for high-intensity beams
7
作者 Lei Wang Jian-Cheng Yang +1 位作者 Ming-Xuan Chang Fu Ma 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第5期163-182,共20页
A simulation code,GOAT,is developed to simulate single-bunch intensity-dependent effects and their interplay in the proton ring of the Electron-Ion Collider in China(EicC)project.GOAT is a scalable and portable macrop... A simulation code,GOAT,is developed to simulate single-bunch intensity-dependent effects and their interplay in the proton ring of the Electron-Ion Collider in China(EicC)project.GOAT is a scalable and portable macroparticle tracking code written in Python and coded by object-oriented programming technology.It allows for transverse and longitudinal tracking,including impedance,space charge effect,electron cloud effect,and beam-beam interaction.In this paper,physical models and numerical approaches for the four types of high-intensity effects,together with the benchmark results obtained through other simulation codes or theories,are presented and discussed.In addition,a numerical application of the cross-talk simulation between the beam-beam interaction and transverse impedance is shown,and a dipole instability is observed below the respective instability threshold.Different mitigation measures implemented in the code are used to suppress the instability.The flexibility,completeness,and advancement demonstrate that GOAT is a powerful tool for beam dynamics studies in the EicC project or other high-intensity accelerators. 展开更多
关键词 Code development Numerical methods Beam dynamics high-intensity effects
下载PDF
Anchorage performance of large-diameter FRP bolts and their application in large deformation roadway
8
作者 Jun Han Zuoqing Bi +2 位作者 Bing Liang Chen Cao Shuangwen Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1037-1043,共7页
In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP... In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP bolts used in shallow underground mining cannot fulfil the rib support requirements. Under the engineering background of deep underground shortwall mining in Wudong coal mine, this paper systematically studies Φ27 mm FRP bolt support for large deformation coal rib. Specimens with a fan-shaped cross-section were used to enable the tensile testing of the bolt rod, the measured average tensile strength of the studied FRP bolt was(486.1 ± 9.6) MPa with a maximum elongation of 5.7%±0.6%.The shear strength of the bolt was measured as approximately 258 MPa using a self-made double shear testing apparatus. Based on the equivalent radial stiffness principle, a laboratory short encapsulation pullout test(SEPT) method for rib bolting has been developed undertaken consideration of the mechanical properties of the coal seam. Results showed that the average peak anchorage forces of the Φ27 mm FRP bolt and Φ20 mm steel rebar bolt were 108.4 and 66.4 k N, respectively, which were agreed with the theoretical calculations and field measurements. Based on theoretical analysis of the loading states of the bolt under site conditions, bolting method of full-length resin grouting was adopted to offset the weaknesses of the FRP bolt. Numerical method was employed to compare the bolting effect using Φ27 mm FRP bolts and steel rebar bolts. Large diameter FRP bolting was determined as the optimum rib support scheme to increase the productivity of the coal mine and to enhance the ground control capability for+425 level mining roadways. This study provides the laboratory testing design and theoretical prediction of large diameter FRP bolts used for rib support in large deformation roadways. 展开更多
关键词 FRP bolt Laboratory SEPT Tensile strength Double shear testing Mined rib support Large deformation roadway
下载PDF
Managing spindle cell sarcoma with surgery and high-intensity focused ultrasound:A case report
9
作者 Ying-Qiong Zhu Gan-Chao Zhao +2 位作者 Chen-Xi Zheng Lei Yuan Geng-Biao Yuan 《World Journal of Clinical Cases》 SCIE 2023年第27期6551-6557,共7页
BACKGROUND Undifferentiated pleomorphic sarcomas,also known as spindle cell sarcomas,are a relatively uncommon subtype of soft tissue sarcomas in clinical practice.CASE SUMMARY We present a case report of a 69-year-ol... BACKGROUND Undifferentiated pleomorphic sarcomas,also known as spindle cell sarcomas,are a relatively uncommon subtype of soft tissue sarcomas in clinical practice.CASE SUMMARY We present a case report of a 69-year-old female patient who was diagnosed with undifferentiated spindle cell soft tissue sarcoma on her left thigh.Surgical excision was initially performed,but the patient experienced a local recurrence following multiple surgeries and radioactive particle implantations.High-intensity focused ultrasound(HIFU)was subsequently administered,resulting in complete ablation of the sarcoma without any significant complications other than bone damage at the treated site.However,approximately four months later,the patient experienced a broken lesion at the original location.After further diagnostic workup,the patient underwent additional surgery and is currently stable with a good quality of life.CONCLUSION HIFU has shown positive outcomes in achieving local control of limb spindle cell sarcoma,making it an effective non-invasive treatment option. 展开更多
关键词 Spindle cell sarcoma high-intensity focused ultrasound Cancer therapy Case report
下载PDF
High-Intensity Interval Training v/s Steady-State Cardio in Rehabilitation of Neurological Patients
10
作者 Thorin Thorbjørnssønn Birkeland 《Open Journal of Therapy and Rehabilitation》 2023年第2期35-44,共10页
Neuropathy is nerve damage that can cause chronic neuropathic pain, which is challenging to cure and has a significant financial burden. Exercise therapies, including High-Intensity Interval Training (HIIT) and steady... Neuropathy is nerve damage that can cause chronic neuropathic pain, which is challenging to cure and has a significant financial burden. Exercise therapies, including High-Intensity Interval Training (HIIT) and steady-state cardio, are being explored as potential treatments for neuropathic pain. This systematic review compares the effectiveness of HIIT and steady-state cardio for improving function in neurological patients. This article provides an overview of the systematic review conducted on the effects of exercise on neuropathic patients, with a focus on high-intensity interval training (HIIT) and steady-state cardio. The authors conducted a comprehensive search of various databases, identified relevant studies based on predetermined inclusion criteria, and used the EPPI automation application to process the data. The final selection of studies was based on validity and relevance, with redundant articles removed. The article reviews four studies that compare high-intensity interval training (HIIT) to moderate-intensity continuous training (MICT) on various health outcomes. The studies found that HIIT can improve aerobic fitness, cerebral blood flow, and brain function in stroke patients;lower diastolic blood pressure more than MICT and improve insulin sensitivity and skeletal muscle mitochondrial content in obese individuals, potentially helping with the prevention and management of type 2 diabetes. In people with multiple sclerosis, acute exercise can decrease the plasma neurofilament light chain while increasing the flow of the kynurenine pathway. The available clinical and preclinical data suggest that further study on high-intensity interval training (HIIT) and its potential to alleviate neuropathic pain is justified. Randomized controlled trials are needed to investigate the type, intensity, frequency, and duration of exercise, which could lead to consensus and specific HIIT-based advice for patients with neuropathies. 展开更多
关键词 Neurological Diseases NEUROPATHIES high-intensity Interval Training (HIIT) Steady-State Cardio EXERCISE
下载PDF
Theory,technology and application of grouted bolting in soft rock roadways of deep coal mines
11
作者 Hongpu Kang Jianwei Yang +4 位作者 Pengfei Jiang Fuqiang Gao Wenzhou Li Jiafeng Li Huiyuan Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1463-1479,共17页
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous... The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated. 展开更多
关键词 deep coal mine soft rock roadway grouted bolting rock bolt and cable grouting material high-pressure splitting grouting collaborative control technology
下载PDF
Lax Facial Skin Treated with High-Intensity Focused Ultrasound Devices: Efficacy and Safety Evaluations
12
作者 Meng Wu Huan Chen 《Journal of Cosmetics, Dermatological Sciences and Applications》 2023年第3期1455-1472,共9页
Background: High-intensity focused ultrasound (HIFU) has been introduced to improve skin laxity in recent years. However, very few studies have evaluated the safety and effectiveness of HIFU in Chinese populations. Me... Background: High-intensity focused ultrasound (HIFU) has been introduced to improve skin laxity in recent years. However, very few studies have evaluated the safety and effectiveness of HIFU in Chinese populations. Methods: In the study, 30 Chinese participants underwent HIFU (Bolida, Inc., Changsha, China) rejuvenation between February 1, 2022, and September 30, 2022. There were three different focal depths used depending on the area where shots were captured (4.5 mm, 4 MHz;3 mm, 7 MHz;1.5 mm, 7 MHz). After 3 months and 6 months of treatment, efficacy and safety were assessed by quantitative analysis. Results: Patients were satisfied with the clinical effects of HIFU rejuvenation after one session. In terms of effectiveness, HIFU was most successful in areas around the jawline, cheek, and perioral. In four cases, erythema was observed, in two cases, swollen gums were seen, but all of these effects were transient and mild. Conclusion: Bolida system can be safe and effective for facial tightening, additionally, they are most effective for jawline, cheek, and perioral improvements. In clinical practice, the Bolida system can be recommended as a reliable treatment option. . 展开更多
关键词 high-intensity Focused Ultrasound Bolida System TREATMENT EFFICACY SAFETY
下载PDF
Numerical Optimization by Finite Element Method of Stainless Steel/Glass-Epoxy Composite Bolted Joint under Tension and Compression
13
作者 Christian Schmitt Arnaud Kremeur +1 位作者 Pawel Lipinski Julien Capelle 《Engineering(科研)》 2024年第4期102-122,共21页
The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in... The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in each component of the bolted join. The multi-material assembly was based on the principle of double lap bolted joint. It was composed of a symmetrical balanced woven glass-epoxy composite material plate fastened to two stainless sheets using a stainless pre-stressed bolt. In order to optimize the design and the geometry of the assembly, ten configurations were proposed and studied: a classical simple bolted joint, two joints with an insert (a BigHead<sup>R</sup> insert and a stair one) embedded in the composite, two “waved” solutions, three symmetrical configurations composed of a succession of metallic and composites layers, without a sleeve, with one and with two sleeves, and two non-symmetrical constituted of metallic and composites layers associated with a stair-insert (one with a sleeve and one without). A tridimensional Finite Element Method (FEM) was used to model each configuration mentioned above. The FE models taked into account the different materials, the effects of contact between the different sheets of the assembly and the pre-stress in the bolt. The stress state was analyzed in the composite part. The concept of stress concentration factor was used in order to evaluate the stress increase in the highly stressed regions and to compare the ten configurations studied. For this purpose, three stress concentration factors were defined: one for a monotonic loading in tension, another for a monotonic loading in compression, and the third for a tension-compression cyclic loading. The results of the FEM computations showed that the use of alternative metallic and composite layers associated with two sleeves gived low values of stress concentration factors, smaller than 1.4. In this case, there was no contact between the bolt and the composite part and the most stressed region was not the vicinity of the hole but the end of the longest layers of the metallic inserts. 展开更多
关键词 bolted Joint Glass-Epoxy Composite CLEARANCE Hybrid Steel-Composite
下载PDF
Laboratory pull-out tests on fully grouted rock bolts and cable bolts:Results and lessons learned 被引量:18
14
作者 Isabelle Thenevin Laura Blanco-Martín +3 位作者 Faouzi Hadj-Hassen Jacques Schleifer Zbigniew Lubosik Aleksander Wrana 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第5期843-855,共13页
Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini... Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface. 展开更多
关键词 Pull-out test Fully grouted bolts Laboratory-scale Confining pressure Embedment length bolt-grout interface
下载PDF
Research Review of Principles and Methods for Ultrasonic Measurement of Axial Stress in Bolts 被引量:10
15
作者 Qinxue Pan Ruipeng Pan +2 位作者 Chang Shao Meile Chang Xiaoyu Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第1期44-59,共16页
Bolts are important fasteners indispensable in the manufacturing field for their advantages, which include convenient assembly and disassembly, easy maintenance, refastenability to prevent looseness, and the avoidance... Bolts are important fasteners indispensable in the manufacturing field for their advantages, which include convenient assembly and disassembly, easy maintenance, refastenability to prevent looseness, and the avoidance of a phase change in the connected material composition. The precise control of the tightening force in bolts is closely related to the safety and reliability of the connected equipment or structure. Although there are many methods for estimating the tightening force applied to a bolt during assembly, poor accuracy in controlling the preload during the tightening process and a lack of monitoring to determine the residual axial force in service remain issues in evaluating the safety of bolted assemblies. As a nondestructive testing technology, ultrasonic measurement can be applied to successfully address these issues. In order to help researchers understand the theoretical basis and technological development in this field and to equip them to conduct further in-depth research, in this review, the basic knowledge describing the state of stress and deformation of bolts, as well as conventional testing methods are summarized and analyzed. Then, through a review of recent research of the ultrasonic measurement of the axial stress in bolts, the influence of the e ective stressed length and temperature are analyzed and proposed methods of calibration and compensation are reviewed. In order to avoid coupling errors caused by traditional piezoelectric transducers, two newly proposed ultrasonic coupling technologies, the electromagnetic acoustic transducer(EMAT) and the permanent mounted transducer system(PMTS), are reviewed. Finally, the new direction of research of the detection of residual axial stress in in-service bolts that have been assembled to yield is discussed. 展开更多
关键词 boltED CONNECTIONS AXIAL stress ULTRASONIC WAVES Influencing factors Coupling techniques
下载PDF
Numerical and analytical simulation of the structural behaviour of fully grouted cable bolts under impulsive loading 被引量:9
16
作者 Faham Tahmasebinia Chengguo Zhang +2 位作者 Ismet Canbulat Onur Vardar Serkan Saydam 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第5期807-811,共5页
Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination ... Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models. 展开更多
关键词 CABLE bolts YIELDING support Coal BURST SHEAR dynamic loading
下载PDF
Mechanical properties and supporting effect of CRLD bolts under static pull test conditions 被引量:8
17
作者 Xiao-ming Sun Yong Zhang +3 位作者 Dong Wang Jun Yang Hui-chen Xu Man-chao He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第1期1-9,共9页
A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large d... A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt. 展开更多
关键词 deep mining bolts mechanical properties rock support static pull test
下载PDF
Experimental and numerical studies on progressive debonding of grouted rock bolts 被引量:9
18
作者 Hao Shi Lei Song +5 位作者 Houquan Zhang Wenlong Chen Huasheng Lin Danqi Li Guozhu Wang Huayun Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第1期63-74,共12页
Understanding the mechanism of progressive debonding of bolts is of great significance for underground safety.In this paper,both laboratory experiment and numerical simulation of the pull-out tests were performed.The ... Understanding the mechanism of progressive debonding of bolts is of great significance for underground safety.In this paper,both laboratory experiment and numerical simulation of the pull-out tests were performed.The experimental pull-out test specimens were prepared using cement mortar material,and a relationship between the pull-out strength of the bolt and the uniaxial compressive strength(UCS)of cement mortar material specimen was established.The locations of crack developed in the pull-out process were identified using the acoustic emission(AE)technique.The pull-out test was reproduced using 2D Particle Flow Code(PFC^(2D))with calibrated parameters.The experimental results show that the axial displacement of the cement mortar material at the peak load during the test was approximately 5 mm for cement-based grout of all strength.In contrast,the peak load of the bolt increased with the UCS of the confining medium.Under peak load,cracks propagated to less than one half of the anchorage length,indicating a lag between crack propagation and axial bolt load transmission.The simulation results show that the dilatation between the bolt and the rock induced cracks and extended the force field along the anchorage direction;and,it was identified as the major contributing factor for the pull-out failure of rock bolt. 展开更多
关键词 bolt pull-out test bolt failure process AE positioning Meso-interaction PFC2D simulation
下载PDF
High-intensity focused ultrasound ablation:An effective bridging therapy for hepatocellular carcinoma patients 被引量:23
19
作者 Tan To Cheung Sheung Tat Fan +11 位作者 See Ching Chan Kenneth SH Chok Ferdinand SK Chu Caroline R Jenkins Regina CL Lo James YY Fung Albert CY Chan William W Sharr Simon HY Tsang Wing Chiu Dai Ronnie TP Poon Chung Mau Lo 《World Journal of Gastroenterology》 SCIE CAS 2013年第20期3083-3089,共7页
AIM:To analyze whether high-intensity focused ultrasound(HIFU) ablation is an effective bridging therapy for patients with hepatocellular carcinoma(HCC).METHODS:From January 2007 to December 2010,49 consecutive HCC pa... AIM:To analyze whether high-intensity focused ultrasound(HIFU) ablation is an effective bridging therapy for patients with hepatocellular carcinoma(HCC).METHODS:From January 2007 to December 2010,49 consecutive HCC patients were listed for liver transplantation(UCSF criteria).The median waiting time for transplantation was 9.5 mo.Twenty-nine patients received transarterial chemoembolization(TACE) as a bringing therapy and 16 patients received no treatment before transplantation.Five patients received HIFU ablation as a bridging therapy.Another five patients with the same tumor staging(within the UCSF criteria) who received HIFU ablation but not on the transplant list were included for comparison.Patients were comparable in terms of Child-Pugh and model for end-stage liver disease scores,tumor size and number,and cause of cirrhosis.RESULTS:The HIFU group and TACE group showed no difference in terms of tumor size and tumor number.One patient in the HIFU group and no patient in the TACE group had gross ascites.The median hospital stay was 1 d(range,1-21 d) in the TACE group and two days(range,1-9 d) in the HIFU group(P < 0.000).No HIFU-related complication occurred.In the HIFU group,nine patients(90%) had complete response and one patient(10%) had partial response to the treatment.In the TACE group,only one patient(3%) had response to the treatment while 14 patients(48%) had stable disease and 14 patients(48%) had progressive disease(P = 0.00).Seven patients in the TACE group and no patient in the HIFU group dropped out from the transplant waiting list(P = 0.559).CONCLUSION:HIFU ablation is safe and effective in the treatment of HCC for patients with advanced cirrhosis.It may reduce the drop-out rate of liver transplant candidate. 展开更多
关键词 Ablation BRIDGING therapy CIRRHOSIS HEPATOCELLULAR carcinoma high-intensity FOCUSED ultrasound Liver TRANSPLANT New technology
下载PDF
A Biomechanical Comparison of Conventional versus an Anatomic Plate and Compression Bolts for Fixation of Intra-articular Calcaneal Fractures 被引量:6
20
作者 王海立 杨朝旭 +5 位作者 吴战坡 陈伟 张奇 李明 李智勇 张英泽 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第4期571-575,共5页
The purpose of this study was to compare the biomechanical stability obtained by using our technique featured an anatomical plate and compression bolts versus that of the conventional anatomic plate and cancellous scr... The purpose of this study was to compare the biomechanical stability obtained by using our technique featured an anatomical plate and compression bolts versus that of the conventional anatomic plate and cancellous screws in the fixation of intraarticular calcaneal fractures.Eighteen fresh frozen lower limbs of cadavers were used to create a reproductive Sanders type-Ⅲ calcaneal fracture model by using osteotomy.The calcaneus fractures were randomly selected to be fixed either using our anatomical plate and compression bolts or conventional anatomic plate and cancellous screws.Reduction of fracture was evaluated through X radiographs.Each calcaneus was successively loaded at a frequency of 1 Hz for 1000 cycles through the talus using an increasing axial force 20 N to 200 N and 20 N to 700 N,representing the partial weight bearing and full weight bearing,respectively,and then the specimens were loaded to failure.Data extracted from the mechanical testing machine were recorded and used to test for difference in the results with the Wilcoxon signed rank test.No significant difference was found between our fixation technique and conventional technique in displacement during 20-200 N cyclic loading(P=0.06),while the anatomical plate and compression bolts showed a great lower irreversible deformation during 20-700 N cyclic loading(P=0.008).The load achieved at loss of fixation of the constructs for the two groups had significant difference:anatomic plate and compression bolts at 3839.6±152.4 N and anatomic plate and cancellous screws at 3087.3±58.9 N(P=0.008).There was no significant difference between the ultimate displacements.Our technique featured anatomical plate and compression bolts for calcaneus fracture fixation was demonstrated to provide biomechanical stability as good as or better than the conventional anatomic plate and cancellous screws under the axial loading.The study supports the mechanical viability of using our plate and compression bolts for the fixation of calcaneal fracture. 展开更多
关键词 calcaneal fracture anatomic plate fixation compression bolts conventional screws biomechanical testing
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部