As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in pra...As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.展开更多
The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structur...The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two t...In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two types of solar panels, namely monocrystalline and polycrystalline. However, the part of the local market is more dominated by the polycrystalline panel. In this work, comparative studies are carried out in order to characterize the two types of solar panels with regard to local constraints. Tests were carried out over the course of the sun to establish the performance of each type. The panels used have the same electrical characteristics and are connected to loads with same characteristics. Under the set operating conditions, the monocrystalline panel presents more performance than the polycrystalline panel. Although the local market is dominated by the polycrystalline panel, dust deposition tests on the surface of the panels show that the performance of the polycrystalline panel is more affected compared to the performance of the monocrystalline panel.展开更多
This article examines the determinants of the adoption of solar pumping systems (PV) by vegetable farmers in the Niayes area of Senegal. To measure the determinants, we used a sequential logit model to translate the a...This article examines the determinants of the adoption of solar pumping systems (PV) by vegetable farmers in the Niayes area of Senegal. To measure the determinants, we used a sequential logit model to translate the adoption process from becoming aware of solar pumping systems to testing them, i.e. using them at least once, and then continuing to use them over time. The results show that the main variables affecting awareness of the use of solar pumping systems (PV) are age, marital status, experience, access to credit, the farmer’s knowledge of climate change, the farmer’s origin in the Thiès region and length of time in the Niayes area. The first use of PVs is influenced by factors such as the size of the plot, the distance of the plot from the main road or from the market. Finally, the decision to adopt or continue use is influenced by gender, experience, household size and access to credit. Surprisingly, access to credit does not affect the first use of solar pumping systems, but plays a key role in their continued use.展开更多
High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negativel...High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas.展开更多
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni...In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.展开更多
A simulation code,GOAT,is developed to simulate single-bunch intensity-dependent effects and their interplay in the proton ring of the Electron-Ion Collider in China(EicC)project.GOAT is a scalable and portable macrop...A simulation code,GOAT,is developed to simulate single-bunch intensity-dependent effects and their interplay in the proton ring of the Electron-Ion Collider in China(EicC)project.GOAT is a scalable and portable macroparticle tracking code written in Python and coded by object-oriented programming technology.It allows for transverse and longitudinal tracking,including impedance,space charge effect,electron cloud effect,and beam-beam interaction.In this paper,physical models and numerical approaches for the four types of high-intensity effects,together with the benchmark results obtained through other simulation codes or theories,are presented and discussed.In addition,a numerical application of the cross-talk simulation between the beam-beam interaction and transverse impedance is shown,and a dipole instability is observed below the respective instability threshold.Different mitigation measures implemented in the code are used to suppress the instability.The flexibility,completeness,and advancement demonstrate that GOAT is a powerful tool for beam dynamics studies in the EicC project or other high-intensity accelerators.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
Inflammatory bowel disease(IBD)is believed to be caused by various factors,including abnormalities in disease susceptibility genes,environmental factors,immune factors,and intestinal bacteria.Proton pump inhibitors(PP...Inflammatory bowel disease(IBD)is believed to be caused by various factors,including abnormalities in disease susceptibility genes,environmental factors,immune factors,and intestinal bacteria.Proton pump inhibitors(PPIs)are the primary drugs used to treat acid-related diseases.They are also commonly prescribed to patients with IBD.Recent studies have suggested a potential association between the use of certain medications,such as PPIs,and the occurrence and progression of IBD.In this review,we summarize the potential impact of PPIs on IBD and analyze the underlying mechanisms.Our findings may provide insights for conducting further investigations into the effects of PPIs on IBD and serve as an important reminder for physicians to exercise caution when prescribing PPIs to patients with IBD.展开更多
The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the...The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the simulation,there is always an optimal value of temperature and unbiased external force for different pumps which make the concentration ratio between the right tube and left tube derive its maximum and minimum in two asymmetric tubes respectively.Besides,the concentration ratio will keep 1 regardless of radius,temperature or magnitude of force in the tube in a symmetric tube.To obtain more information about pumping capacity,exploring the average probability current(APC) of tubes in different conditions is necessary.Results indicate that as the concentration ratio is 1,the change of the APC when x_(0)=0 is similar to that when x_(0)=π.Also,when the concentration ratio is more than 1,there are optimal values of temperature,radius and magnitude of force where the APC gains a maximum,and the maximum decreases as the concentration in the right tube increases when x_(0)=0.展开更多
Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits ...Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits a feature of the field-induced transition from parallel pumping to perpendicular pumping because of the inhomogeneous excitation geometry.Thanks to the high precision of the SP-ISHE detection,two sets of fine structures in the voltage spectrum are observed,which can correspond well to two kinds of critical points in the multimode spin-wave spectrum for magnetic films.One is the q=0 point of each higher-order dispersion branch,and the other is the local minimum due to the interplay between the dipolar and exchange interactions.These fine structures on the voltage spectrum confirm the spin pumping by higher-order dipole-exchange spin-wave modes,and are helpful for probing the multimode spin-wave spectrum.展开更多
We report a high-average-power noise-like pulse(NLP) and dissipative soliton(DS) pulse fiber laser. Average power as high as 4.8 W could be obtained at the fundamental mode-locked repetition rate. The NLP can also be ...We report a high-average-power noise-like pulse(NLP) and dissipative soliton(DS) pulse fiber laser. Average power as high as 4.8 W could be obtained at the fundamental mode-locked repetition rate. The NLP can also be transformed into a more powerful DS mode-locking state by optimizing the polarization and losses of intra-cavity pulses in the nonlinear polarization evolution regime. The operation mode between the NLP and DS can be switched, and the laser output performance in both modes has been studied. The main advantage of this work is switchable high-power operation between the NLP and DS. In comparison with conventional single-mode NLP fiber lasers, the multi-function high-power optical source will greatly push its application in supercontinuum generation, coherence tomography, and industrial processing.展开更多
BACKGROUND Undifferentiated pleomorphic sarcomas,also known as spindle cell sarcomas,are a relatively uncommon subtype of soft tissue sarcomas in clinical practice.CASE SUMMARY We present a case report of a 69-year-ol...BACKGROUND Undifferentiated pleomorphic sarcomas,also known as spindle cell sarcomas,are a relatively uncommon subtype of soft tissue sarcomas in clinical practice.CASE SUMMARY We present a case report of a 69-year-old female patient who was diagnosed with undifferentiated spindle cell soft tissue sarcoma on her left thigh.Surgical excision was initially performed,but the patient experienced a local recurrence following multiple surgeries and radioactive particle implantations.High-intensity focused ultrasound(HIFU)was subsequently administered,resulting in complete ablation of the sarcoma without any significant complications other than bone damage at the treated site.However,approximately four months later,the patient experienced a broken lesion at the original location.After further diagnostic workup,the patient underwent additional surgery and is currently stable with a good quality of life.CONCLUSION HIFU has shown positive outcomes in achieving local control of limb spindle cell sarcoma,making it an effective non-invasive treatment option.展开更多
In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loo...In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.展开更多
A 527 nm pump laser generating 1.7 mJ energy with peak power of more than 0.12 GW is demonstrated.The theoretical simulation result shows that it has 10^(6) gain in the picosecond-pump optical parametric chirped pulse...A 527 nm pump laser generating 1.7 mJ energy with peak power of more than 0.12 GW is demonstrated.The theoretical simulation result shows that it has 10^(6) gain in the picosecond-pump optical parametric chirped pulse amplification when the pump laser peak power is 0.1 GW and the intensity is more than 5 GW/cm^(2),and that it can limit the parametric fluorescence in the picosecond time scale of pump duration.The pump laser system adopts a master-oscillator power amplifier,which integrates a more than 30 pJ fiber-based oscillator with a 150μJ regenerative amplifier and a relay-imaged four-pass diode-pump Nd glass amplifier to generate a 1 Hz top hat spatial beam and about 14 ps temporal Guassian pulse with<2%pulse-to-pulse energy stability.The output energy of the power amplifier is limited to 4 mJ for B-integral concern,and the frequency doubling efficiency can reach 65%with input intensity 10 GW/cm^(2).展开更多
Neuropathy is nerve damage that can cause chronic neuropathic pain, which is challenging to cure and has a significant financial burden. Exercise therapies, including High-Intensity Interval Training (HIIT) and steady...Neuropathy is nerve damage that can cause chronic neuropathic pain, which is challenging to cure and has a significant financial burden. Exercise therapies, including High-Intensity Interval Training (HIIT) and steady-state cardio, are being explored as potential treatments for neuropathic pain. This systematic review compares the effectiveness of HIIT and steady-state cardio for improving function in neurological patients. This article provides an overview of the systematic review conducted on the effects of exercise on neuropathic patients, with a focus on high-intensity interval training (HIIT) and steady-state cardio. The authors conducted a comprehensive search of various databases, identified relevant studies based on predetermined inclusion criteria, and used the EPPI automation application to process the data. The final selection of studies was based on validity and relevance, with redundant articles removed. The article reviews four studies that compare high-intensity interval training (HIIT) to moderate-intensity continuous training (MICT) on various health outcomes. The studies found that HIIT can improve aerobic fitness, cerebral blood flow, and brain function in stroke patients;lower diastolic blood pressure more than MICT and improve insulin sensitivity and skeletal muscle mitochondrial content in obese individuals, potentially helping with the prevention and management of type 2 diabetes. In people with multiple sclerosis, acute exercise can decrease the plasma neurofilament light chain while increasing the flow of the kynurenine pathway. The available clinical and preclinical data suggest that further study on high-intensity interval training (HIIT) and its potential to alleviate neuropathic pain is justified. Randomized controlled trials are needed to investigate the type, intensity, frequency, and duration of exercise, which could lead to consensus and specific HIIT-based advice for patients with neuropathies.展开更多
Background: High-intensity focused ultrasound (HIFU) has been introduced to improve skin laxity in recent years. However, very few studies have evaluated the safety and effectiveness of HIFU in Chinese populations. Me...Background: High-intensity focused ultrasound (HIFU) has been introduced to improve skin laxity in recent years. However, very few studies have evaluated the safety and effectiveness of HIFU in Chinese populations. Methods: In the study, 30 Chinese participants underwent HIFU (Bolida, Inc., Changsha, China) rejuvenation between February 1, 2022, and September 30, 2022. There were three different focal depths used depending on the area where shots were captured (4.5 mm, 4 MHz;3 mm, 7 MHz;1.5 mm, 7 MHz). After 3 months and 6 months of treatment, efficacy and safety were assessed by quantitative analysis. Results: Patients were satisfied with the clinical effects of HIFU rejuvenation after one session. In terms of effectiveness, HIFU was most successful in areas around the jawline, cheek, and perioral. In four cases, erythema was observed, in two cases, swollen gums were seen, but all of these effects were transient and mild. Conclusion: Bolida system can be safe and effective for facial tightening, additionally, they are most effective for jawline, cheek, and perioral improvements. In clinical practice, the Bolida system can be recommended as a reliable treatment option. .展开更多
China has embarked on an extensive and sustained endeavor to harness its coal resources for a substantial period.However,the depletion of coal reserves in mining regions has necessitated the closure or abandonment of ...China has embarked on an extensive and sustained endeavor to harness its coal resources for a substantial period.However,the depletion of coal reserves in mining regions has necessitated the closure or abandonment of numerous mines,resulting in a marked increase in the number of such facilities.Parallel to this,China is vigorously advancing the development of a novel energy power system,aimed at transitioning the power sector from a high-carbon,fossil fuel-dependent paradigm to a low-carbon,clean energy footing.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51922023,61874011)Fundamental Research Funds for the Central Universities(E1EG6804)
文摘As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
基金National Key Research and De-velopment Program of China(Grant No.2023YFA1406603)the National Natural Science Foundation of China(Grant Nos.52071079,12274071,12374112,and T2394473)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB491).
文摘The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
文摘In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two types of solar panels, namely monocrystalline and polycrystalline. However, the part of the local market is more dominated by the polycrystalline panel. In this work, comparative studies are carried out in order to characterize the two types of solar panels with regard to local constraints. Tests were carried out over the course of the sun to establish the performance of each type. The panels used have the same electrical characteristics and are connected to loads with same characteristics. Under the set operating conditions, the monocrystalline panel presents more performance than the polycrystalline panel. Although the local market is dominated by the polycrystalline panel, dust deposition tests on the surface of the panels show that the performance of the polycrystalline panel is more affected compared to the performance of the monocrystalline panel.
文摘This article examines the determinants of the adoption of solar pumping systems (PV) by vegetable farmers in the Niayes area of Senegal. To measure the determinants, we used a sequential logit model to translate the adoption process from becoming aware of solar pumping systems to testing them, i.e. using them at least once, and then continuing to use them over time. The results show that the main variables affecting awareness of the use of solar pumping systems (PV) are age, marital status, experience, access to credit, the farmer’s knowledge of climate change, the farmer’s origin in the Thiès region and length of time in the Niayes area. The first use of PVs is influenced by factors such as the size of the plot, the distance of the plot from the main road or from the market. Finally, the decision to adopt or continue use is influenced by gender, experience, household size and access to credit. Surprisingly, access to credit does not affect the first use of solar pumping systems, but plays a key role in their continued use.
文摘High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas.
文摘In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.
基金supported by the National Science Fund for Distinguished Young Scholars (No.11825505)the National Key R&D Program of China (No.2019YFA0405400)。
文摘A simulation code,GOAT,is developed to simulate single-bunch intensity-dependent effects and their interplay in the proton ring of the Electron-Ion Collider in China(EicC)project.GOAT is a scalable and portable macroparticle tracking code written in Python and coded by object-oriented programming technology.It allows for transverse and longitudinal tracking,including impedance,space charge effect,electron cloud effect,and beam-beam interaction.In this paper,physical models and numerical approaches for the four types of high-intensity effects,together with the benchmark results obtained through other simulation codes or theories,are presented and discussed.In addition,a numerical application of the cross-talk simulation between the beam-beam interaction and transverse impedance is shown,and a dipole instability is observed below the respective instability threshold.Different mitigation measures implemented in the code are used to suppress the instability.The flexibility,completeness,and advancement demonstrate that GOAT is a powerful tool for beam dynamics studies in the EicC project or other high-intensity accelerators.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
文摘Inflammatory bowel disease(IBD)is believed to be caused by various factors,including abnormalities in disease susceptibility genes,environmental factors,immune factors,and intestinal bacteria.Proton pump inhibitors(PPIs)are the primary drugs used to treat acid-related diseases.They are also commonly prescribed to patients with IBD.Recent studies have suggested a potential association between the use of certain medications,such as PPIs,and the occurrence and progression of IBD.In this review,we summarize the potential impact of PPIs on IBD and analyze the underlying mechanisms.Our findings may provide insights for conducting further investigations into the effects of PPIs on IBD and serve as an important reminder for physicians to exercise caution when prescribing PPIs to patients with IBD.
基金National Natural Science Foundation of China (No. 61975058)Blue Shield Technology Project,China (No. LD20170209)。
文摘The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the simulation,there is always an optimal value of temperature and unbiased external force for different pumps which make the concentration ratio between the right tube and left tube derive its maximum and minimum in two asymmetric tubes respectively.Besides,the concentration ratio will keep 1 regardless of radius,temperature or magnitude of force in the tube in a symmetric tube.To obtain more information about pumping capacity,exploring the average probability current(APC) of tubes in different conditions is necessary.Results indicate that as the concentration ratio is 1,the change of the APC when x_(0)=0 is similar to that when x_(0)=π.Also,when the concentration ratio is more than 1,there are optimal values of temperature,radius and magnitude of force where the APC gains a maximum,and the maximum decreases as the concentration in the right tube increases when x_(0)=0.
基金the National Natural Science Foundation of China(Grant No.11904194).
文摘Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits a feature of the field-induced transition from parallel pumping to perpendicular pumping because of the inhomogeneous excitation geometry.Thanks to the high precision of the SP-ISHE detection,two sets of fine structures in the voltage spectrum are observed,which can correspond well to two kinds of critical points in the multimode spin-wave spectrum for magnetic films.One is the q=0 point of each higher-order dispersion branch,and the other is the local minimum due to the interplay between the dipolar and exchange interactions.These fine structures on the voltage spectrum confirm the spin pumping by higher-order dipole-exchange spin-wave modes,and are helpful for probing the multimode spin-wave spectrum.
基金supported by the National Natural Science Foundation of China (Grant No. 12164030)the Major Program of the National Natural Science Foundation of China (Grant No. 12034020)+1 种基金Young Science and Technology Talents of Inner Mongolia, China (Grant No. NJYT22101)the Talent Development Fund of Inner Mongolia, China。
文摘We report a high-average-power noise-like pulse(NLP) and dissipative soliton(DS) pulse fiber laser. Average power as high as 4.8 W could be obtained at the fundamental mode-locked repetition rate. The NLP can also be transformed into a more powerful DS mode-locking state by optimizing the polarization and losses of intra-cavity pulses in the nonlinear polarization evolution regime. The operation mode between the NLP and DS can be switched, and the laser output performance in both modes has been studied. The main advantage of this work is switchable high-power operation between the NLP and DS. In comparison with conventional single-mode NLP fiber lasers, the multi-function high-power optical source will greatly push its application in supercontinuum generation, coherence tomography, and industrial processing.
文摘BACKGROUND Undifferentiated pleomorphic sarcomas,also known as spindle cell sarcomas,are a relatively uncommon subtype of soft tissue sarcomas in clinical practice.CASE SUMMARY We present a case report of a 69-year-old female patient who was diagnosed with undifferentiated spindle cell soft tissue sarcoma on her left thigh.Surgical excision was initially performed,but the patient experienced a local recurrence following multiple surgeries and radioactive particle implantations.High-intensity focused ultrasound(HIFU)was subsequently administered,resulting in complete ablation of the sarcoma without any significant complications other than bone damage at the treated site.However,approximately four months later,the patient experienced a broken lesion at the original location.After further diagnostic workup,the patient underwent additional surgery and is currently stable with a good quality of life.CONCLUSION HIFU has shown positive outcomes in achieving local control of limb spindle cell sarcoma,making it an effective non-invasive treatment option.
基金supported by the National Natural Science Foundation of China under Grant 62274189the Natural Science Foundation of Guangdong Province,China,under Grant 2022A1515011054the Key Area R&D Program of Guangdong Province under Grant 2022B0701180001.
文摘In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.
文摘A 527 nm pump laser generating 1.7 mJ energy with peak power of more than 0.12 GW is demonstrated.The theoretical simulation result shows that it has 10^(6) gain in the picosecond-pump optical parametric chirped pulse amplification when the pump laser peak power is 0.1 GW and the intensity is more than 5 GW/cm^(2),and that it can limit the parametric fluorescence in the picosecond time scale of pump duration.The pump laser system adopts a master-oscillator power amplifier,which integrates a more than 30 pJ fiber-based oscillator with a 150μJ regenerative amplifier and a relay-imaged four-pass diode-pump Nd glass amplifier to generate a 1 Hz top hat spatial beam and about 14 ps temporal Guassian pulse with<2%pulse-to-pulse energy stability.The output energy of the power amplifier is limited to 4 mJ for B-integral concern,and the frequency doubling efficiency can reach 65%with input intensity 10 GW/cm^(2).
文摘Neuropathy is nerve damage that can cause chronic neuropathic pain, which is challenging to cure and has a significant financial burden. Exercise therapies, including High-Intensity Interval Training (HIIT) and steady-state cardio, are being explored as potential treatments for neuropathic pain. This systematic review compares the effectiveness of HIIT and steady-state cardio for improving function in neurological patients. This article provides an overview of the systematic review conducted on the effects of exercise on neuropathic patients, with a focus on high-intensity interval training (HIIT) and steady-state cardio. The authors conducted a comprehensive search of various databases, identified relevant studies based on predetermined inclusion criteria, and used the EPPI automation application to process the data. The final selection of studies was based on validity and relevance, with redundant articles removed. The article reviews four studies that compare high-intensity interval training (HIIT) to moderate-intensity continuous training (MICT) on various health outcomes. The studies found that HIIT can improve aerobic fitness, cerebral blood flow, and brain function in stroke patients;lower diastolic blood pressure more than MICT and improve insulin sensitivity and skeletal muscle mitochondrial content in obese individuals, potentially helping with the prevention and management of type 2 diabetes. In people with multiple sclerosis, acute exercise can decrease the plasma neurofilament light chain while increasing the flow of the kynurenine pathway. The available clinical and preclinical data suggest that further study on high-intensity interval training (HIIT) and its potential to alleviate neuropathic pain is justified. Randomized controlled trials are needed to investigate the type, intensity, frequency, and duration of exercise, which could lead to consensus and specific HIIT-based advice for patients with neuropathies.
文摘Background: High-intensity focused ultrasound (HIFU) has been introduced to improve skin laxity in recent years. However, very few studies have evaluated the safety and effectiveness of HIFU in Chinese populations. Methods: In the study, 30 Chinese participants underwent HIFU (Bolida, Inc., Changsha, China) rejuvenation between February 1, 2022, and September 30, 2022. There were three different focal depths used depending on the area where shots were captured (4.5 mm, 4 MHz;3 mm, 7 MHz;1.5 mm, 7 MHz). After 3 months and 6 months of treatment, efficacy and safety were assessed by quantitative analysis. Results: Patients were satisfied with the clinical effects of HIFU rejuvenation after one session. In terms of effectiveness, HIFU was most successful in areas around the jawline, cheek, and perioral. In four cases, erythema was observed, in two cases, swollen gums were seen, but all of these effects were transient and mild. Conclusion: Bolida system can be safe and effective for facial tightening, additionally, they are most effective for jawline, cheek, and perioral improvements. In clinical practice, the Bolida system can be recommended as a reliable treatment option. .
文摘China has embarked on an extensive and sustained endeavor to harness its coal resources for a substantial period.However,the depletion of coal reserves in mining regions has necessitated the closure or abandonment of numerous mines,resulting in a marked increase in the number of such facilities.Parallel to this,China is vigorously advancing the development of a novel energy power system,aimed at transitioning the power sector from a high-carbon,fossil fuel-dependent paradigm to a low-carbon,clean energy footing.