期刊文献+
共找到52,321篇文章
< 1 2 250 >
每页显示 20 50 100
Finite element modeling of heating phenomena of cracks excited by high-intensity ultrasonic pulses 被引量:10
1
作者 陈赵江 郑江 +2 位作者 张淑仪 米小兵 郑凯 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期678-690,共13页
A three-dimensional thermo-mechanical coupled finite element model is built up to simulate the phenomena of dynamical contact and frictional heating of crack faces when the plate containing the crack is excited by hig... A three-dimensional thermo-mechanical coupled finite element model is built up to simulate the phenomena of dynamical contact and frictional heating of crack faces when the plate containing the crack is excited by high-intensity ultrasonic pulses. In the finite element model, the high-power ultrasonic transducer is modeled by using a piezoelectric thermal-analogy method, and the dynamical interaction between both crack faces is modeled using a contact-impact theory. In the simulations, the frictional heating taking place at the crack faces is quantitatively calculated by using finite element thermal-structural coupling analysis, especially, the influences of acoustic chaos to plate vibration and crack heating are calculated and analysed in detail. Meanwhile, the related ultrasonic infrared images are also obtained experimentally, and the theoretical simulation results are in agreement with that of the experiments. The results show that, by using the theoretical method, a good simulation of dynamic interaction and friction heating process of the crack faces under non-chaotic or chaotic sound excitation can be obtained. 展开更多
关键词 ultrasonic infrared imaging frictional heating of cracks acoustic chaos finite element method
下载PDF
Influence of high-intensity ultrasonic treatment on the phase morphology of a Mg-9.0wt.%Al binary alloy 被引量:4
2
作者 ZHANG Zhiqiang LE Qichi CUI Jianzhong 《Rare Metals》 SCIE EI CAS CSCD 2009年第1期86-90,共5页
The effect of ultrasonic treatment on the β-phase (Mg17Al12) morphology of an Mg-9.0wt.%Al alloy was studied. The result shows that with high-intensity ultrasonic vibration employed during the solidifying of Mg-9.0... The effect of ultrasonic treatment on the β-phase (Mg17Al12) morphology of an Mg-9.0wt.%Al alloy was studied. The result shows that with high-intensity ultrasonic vibration employed during the solidifying of Mg-9.0wt.%Al, the β-phase in the entire cross section of the billet is significantly refined and also changed from continuous to discontinuous morphology. Spherical β-phase is formed during the solidification of the billet treated with high-intensity ultrasonic vibration. 展开更多
关键词 magnesium alloy REFINEMENT ultrasonic vibration phase morphology
下载PDF
Formation of hypereutectic silicon particles in hypoeutectic Al-Si alloys under the influence of high-intensity ultrasonic vibration 被引量:3
3
作者 Xiaogang Jian Qingyou Han 《China Foundry》 SCIE CAS 2013年第2期118-123,共6页
The modification of eutectic silicon is of general interest since fine eutectic silicon along with fine primary aluminum grains improves mechanical properties and ductilities. In this study, high intensity ultrasonic ... The modification of eutectic silicon is of general interest since fine eutectic silicon along with fine primary aluminum grains improves mechanical properties and ductilities. In this study, high intensity ultrasonic vibration was used to modify the complex microstructure of aluminum hypoeutectic alloys. The ultrasonic vibrator was placed at the bottom of a copper mold with molten aluminum. Hypoeutectic Al-Si alloy specimens with a unique in-depth profile of microstructure distribution were obtained. Polyhedral silicon particles, which should form in a hypereutectic alloy, were obtained in a hypoeutectic Al-Si alloy near the ultrasonic radiator where the silicon concentration was higher than the eutectic composition. The formation of hypereutectic silicon near the radiator surface indicates that high-intensity ultrasonic vibration can be used to influence the phase transformation process of metals and alloys. The size and morphology of both the silicon phase and the aluminum phase varies with increasing distance from the ultrasonic probe/radiator. Silicon morphology develops into three zones. Polyhedral primary silicon particles present in zoneⅠ, within 15 mm from the ultrasonic probe/radiator. Transition from hypereutectic silicon to eutectic silicon occurs in zoneⅡ about 15 to 20 μm from the ultrasonic probe/radiator. The bulk of the ingot is in zoneⅢ and is hypoeutectic Al-Si alloy containing fine lamellar and fibrous eutectic silicon. The grain size is about 15 to 25 μm in zoneⅠ, 25 to 35 μm in zoneⅡ, and 25 to 55 μm in zoneⅢ. The morphology of the primary α-Al phase is also changed from dendritic (in untreated samples) to globular. Phase evolution during the solidification process of the alloy subjected to ultrasonic vibration is described. 展开更多
关键词 eutectic solidification aluminum alloys microstructure and ultrasonic vibration
下载PDF
Effect of high-intensity ultrasonic field on process of semi-continuous casting for AZ80 magnesium alloy billets 被引量:1
4
作者 张志强 乐启炽 崔建忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期376-381,共6页
Under the high-intensity ultrasonic field,AZ80 magnesium alloy was semi-continuously cast.The effects of ultrasonic intensity on the as-cast microstructures and mechanical properties were investigated.The results show... Under the high-intensity ultrasonic field,AZ80 magnesium alloy was semi-continuously cast.The effects of ultrasonic intensity on the as-cast microstructures and mechanical properties were investigated.The results show that the microstructures of the alloy cast under high-intensity ultrasonic field are fine and uniform,and the grains are equiaxed,rose-shaped or globular with an average size of 257μm.High-intensity field significantly decreases the grain size,changes the morphologies of theβ-Mg17Al12 phases and reduces their area fraction.It is also shown that a proper increase in ultrasonic intensity is helpful to obtain fine,uniform and equiaxed as-cast microstructures.The optimum ultrasonic parameters are that frequency is 20 kHz and ultrasonic intensity is 1 368 W.The mechanical tests show that the mechanical properties of the as-cast AZ80 magnesium alloy billets cast under ultrasonic field are greatly improved,and with increasing the ultrasonic intensity,the mechanical properties of the entire alloy billets are much higher and more uniform than those of the alloy without ultrasonic field. 展开更多
关键词 AZ80镁合金 半连续铸造 超声场 高强度 铸造过程 坯料 力学性能 超声强度
下载PDF
Behaviors of cavitation bubbles driven by high-intensity ultrasound
5
作者 黄晨阳 李凡 +5 位作者 冯释毅 王成会 陈时 胡静 何芯蕊 宋家凯 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期394-404,共11页
In a multi-bubble system, the bubble behavior is modulated by the primary acoustic field and the secondary acoustic field. To explore the translational motion of bubbles in cavitation liquids containing high-concentra... In a multi-bubble system, the bubble behavior is modulated by the primary acoustic field and the secondary acoustic field. To explore the translational motion of bubbles in cavitation liquids containing high-concentration cavitation nuclei,evolutions of bubbles are recorded by a high-speed camera, and translational trajectories of several representative bubbles are traced. It is found that translational motion of bubbles is always accompanied by the fragmentation and coalescence of bubbles, and for bubbles smaller than 10 μm, the possibility of bubble coalescence is enhanced when the spacing of bubbles is less than 30 μm. The measured signals and their spectra show the presence of strong negative pressure, broadband noise,and various harmonics, which implies that multiple interactions of bubbles appear in the region of high-intensity cavitation.Due to the strong coupling effect, the interaction between bubbles is random. A simplified triple-bubble model is developed to explore the interaction patterns of bubbles affected by the surrounding bubbles. Patterns of bubble interaction, such as attraction, repulsion, stable spacing, and rebound of bubbles, can be predicted by the theoretical analysis, and the obtained results are in good agreement with experimental observations. Mass exchange between the liquid and bubbles as well as absorption in the cavitation nuclei also plays an important role in multi-bubble cavitation, which may account for the weakening of the radial oscillations of bubbles. 展开更多
关键词 ultrasonic cavitation multi-bubble system translational motion of bubbles
下载PDF
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
6
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure MICROSTRUCTURE forming mechanism
下载PDF
Damage Evolution of Ballastless Track Concrete Exposed to Flexural Fatigue Loads:The Application of Ultrasonic Pulse Velocity,Impact-echo and Surface Electrical Resistance Method
7
作者 杨志强 李化建 +4 位作者 WEN Jiaxing DONG Haoliang HUANG Fali WANG Zhen YI Zhonglai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期353-363,共11页
In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variab... In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads. 展开更多
关键词 ballastless track fatigue damage ultrasonic pulse velocity IMPACT-ECHO surface electrical resistance
下载PDF
Understanding the spatial interaction of ultrasounds based on three-dimensional dual-frequency ultrasonic field numerical simulation
8
作者 Zhao-yang Yin Qi-chi Le +3 位作者 Yan-chao Jiang Da-zhi Zhao Qi-yu Liao Qi Zou 《China Foundry》 SCIE EI CAS CSCD 2024年第1期29-43,共15页
A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the u... A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20). 展开更多
关键词 dual-frequency ultrasonic numerical model acoustic pressure spatial interaction magnesium alloy
下载PDF
Non-Kramers doublet ground state in a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) investigated by ultrasonic measurements
9
作者 张化远 Kazuhei Wakiya +2 位作者 Mitsuteru Nakamura Masahito Yoshizawa Yoshiki Nakanish 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期405-411,共7页
We performed ultrasonic measurements on a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) to explore the ground state properties derived from non-Kramers Γ_(3) doublet of Pr^(3+).PrRu_(2)In_(2)Zn_(18) is a quaternary... We performed ultrasonic measurements on a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) to explore the ground state properties derived from non-Kramers Γ_(3) doublet of Pr^(3+).PrRu_(2)In_(2)Zn_(18) is a quaternary derivative of the ternary compound PrRu_(2)Zn_(20) that exhibits a structural phase transition at T_S=138 K.In PrRu_(2)In_(2)Zn_(18),the Zn atoms at the 16c site in PrRu_(2)Zn_(20) are selectively replaced by In atoms.A monotonic increase was observed in the temperature dependence of elastic constants C_L=(C_(11)+2C_(12)+4C_(44))/3 and C_T=(C_(11)-C_(12)+C_(44))/3 in the temperature range around T_S to which an elastic softening was observed in(C_(11)-C_(12))/2 for PrRu_(2)Zn_(20).The disappearance of the softening indicates that the structural transition in PrRu_(2)Zn_(20) is suppressed by the substitution of Zn ions by In ones with a larger ionic radius.Alternatively,the C_T of PrRu_(2)In_(2)Zn_(18) exhibits a precursor Curie-type elastic softening toward low temperatures being responsible for the non-Kramers Γ_(3) ground state.We discuss the ground state and the evolution of the elastic properties of the different single-crystal samples of PrRu_(2)In_(2)Zn_(18) grown under different conditions. 展开更多
关键词 ultrasonic measurements non-Kramers doublet structural phase transition crystalline electric field effect
下载PDF
Hybrid pedestrian positioning system using wearable inertial sensors and ultrasonic ranging
10
作者 Lin Qi Yu Liu +2 位作者 Chuanshun Gao Tao Feng Yue Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期327-338,共12页
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ... Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios. 展开更多
关键词 Pedestrian positioning system Wearable inertial sensors ultrasonic ranging Deep-learning Data and model dual-driven
下载PDF
Detection of internal crack growth in polyethylene pipe using guided wave ultrasonic testing
11
作者 Jay Kumar Shah Hao Wang Said El-Hawwat 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期319-329,共11页
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve... Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth. 展开更多
关键词 polyethylene pipes internal cracks guided wave ultrasonic testing torsional modes finite element modeling
下载PDF
Seismic Reduction and Isolation Design Strategies for Bridges in High-Intensity Earthquake Areas
12
作者 Shengtang Wang 《Journal of Architectural Research and Development》 2024年第1期68-74,共7页
High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negativel... High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas. 展开更多
关键词 high-intensity earthquake areas Rubber isolation Seismic reinforcement technology
下载PDF
Analysis of the Risk of Water Breakout in the Bottom Plate of High-Intensity Mining of Extra-Thick Coal Seams
13
作者 Shuo Wang Hongdong Kang Xinchen Wang 《Journal of Geoscience and Environment Protection》 2024年第5期81-91,共11页
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni... In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard. 展开更多
关键词 Extra-Thick Coal Seam high-intensity Mining Microseismic Monitoring Water-Surge Hazard Borehole Peeping
下载PDF
Analysis of Ultrasonic Emulsification Surgery and Small Incision Cataract Extracapsular Extraction Surgery for Cataract Clinical Treatment Level Improvement
14
作者 Chunyan Ji 《Journal of Clinical and Nursing Research》 2024年第2期196-200,共5页
Objective:To analyze the efficacy of ultrasonic emulsification and small incision cataract extracapsular extraction in cataract patients.Methods:96 cataract patients admitted from May 2021 to May 2023 were selected an... Objective:To analyze the efficacy of ultrasonic emulsification and small incision cataract extracapsular extraction in cataract patients.Methods:96 cataract patients admitted from May 2021 to May 2023 were selected and randomly grouped into group A(ultrasonic emulsification)and group B(small-incision extracapsular cataract extraction),with 48 cases each.Results:At 1 week,1-month,and 3 months post-operation,the visual acuity of group A was higher and the astigmatism value was lower than that of group B(P<0.05);at 12h,24h,and 48h post-operation,the intraocular pressure of group A was higher than that of group B(P<0.05);the thickness of macular area of group A was lower than that of group B at 1 week and 1-month post-operation(P<0.05).Conclusion:Ultrasonic emulsification in cataract patients was slightly better than small incision cataract extracapsular extraction in correcting astigmatism,improving visual acuity,and regulating macular thickness.However,due to the high energy of ultrasonic emulsification,the risk of complications such as high postoperative intraocular pressure was higher.Small-incision extracapsular cataract extraction has better application value in economically disadvantaged areas. 展开更多
关键词 CATARACT Cataract ultrasonic emulsification Small incision cataract extracapsular extraction Therapeutic efficacy
下载PDF
Structure and allergenicity of a-lactalbumin:effects of ultrasonic prior to glycation and subsequent phosphorylation 被引量:1
15
作者 Wenmei Chen Qiongzhen Chen +4 位作者 Houze Zhou Yanhong Shao Yang Wang Jun Liu Zongcai Tu 《Food Science and Human Wellness》 SCIE CSCD 2023年第3期825-831,共7页
Bovineα-lactalbumin(BLA)induced severe cow's milk allergy.In this study,a novel strategy combining ultrasonication,performed before glycation,and phosphorylation was proposed to reduce BLA allergenicity.Result sh... Bovineα-lactalbumin(BLA)induced severe cow's milk allergy.In this study,a novel strategy combining ultrasonication,performed before glycation,and phosphorylation was proposed to reduce BLA allergenicity.Result showed that IgE-and IgG-binding capacities and the release rates of histamine and interleukin-6 from RBL-2 H3 were reduced.Moreover,intrinsic fluorescence intensity and surface hydrophobicity were decreased,whereas glycated sites(R10,N44,K79,K108,N102 and K114)and phosphorylated sites(Y36 and S112)of BLA were increased.Minimum allergenicity was detected during BLA treatment after ultrasonic prior to glycation and subsequent phosphorylation because of considerable increase in glycated and phosphorylated sites.Therefore,the decrease in allergenicity of BLA,the effect correlated well with the shielding effect of glycated sites combined with phosphorylated sites and the conformational changes.This study provides important theoretical foundations for improving and using the ultrasonic technology combined with protein modification in allergenic protein processing. 展开更多
关键词 Bovineα-lactalbumin ALLERGENICITY ultrasonic Protein modification
下载PDF
Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas–liquid slug flow by using ultrasonic Doppler method 被引量:1
16
作者 Lusheng Zhai Bo Xu +1 位作者 Haiyan Xia Ningde Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期323-340,共18页
Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterize... Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows. 展开更多
关键词 Gas–liquid flow Complex fluids Measurement ultrasonic Doppler Velocity profile Liquid film thickness
下载PDF
GOAT:a simulation code for high-intensity beams
17
作者 Lei Wang Jian-Cheng Yang +1 位作者 Ming-Xuan Chang Fu Ma 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第5期163-182,共20页
A simulation code,GOAT,is developed to simulate single-bunch intensity-dependent effects and their interplay in the proton ring of the Electron-Ion Collider in China(EicC)project.GOAT is a scalable and portable macrop... A simulation code,GOAT,is developed to simulate single-bunch intensity-dependent effects and their interplay in the proton ring of the Electron-Ion Collider in China(EicC)project.GOAT is a scalable and portable macroparticle tracking code written in Python and coded by object-oriented programming technology.It allows for transverse and longitudinal tracking,including impedance,space charge effect,electron cloud effect,and beam-beam interaction.In this paper,physical models and numerical approaches for the four types of high-intensity effects,together with the benchmark results obtained through other simulation codes or theories,are presented and discussed.In addition,a numerical application of the cross-talk simulation between the beam-beam interaction and transverse impedance is shown,and a dipole instability is observed below the respective instability threshold.Different mitigation measures implemented in the code are used to suppress the instability.The flexibility,completeness,and advancement demonstrate that GOAT is a powerful tool for beam dynamics studies in the EicC project or other high-intensity accelerators. 展开更多
关键词 Code development Numerical methods Beam dynamics high-intensity effects
下载PDF
Mechanism of ultrasonic strengthening fluidity of low mature shale oil: A case study of the first member of Lucaogou Formation, western Jimusaer Sag, Northwest China
18
作者 Bo-Yang Wang Bo Liu +1 位作者 Yun-Fei Cui Zi-Long Wang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3337-3347,共11页
The low mature shale oil resources of Lucaogou Formation in Jimusar Sag have a great potential, but the heavy oil quality limits large-scale economic development significantly. Ultrasonic is a typical representative o... The low mature shale oil resources of Lucaogou Formation in Jimusar Sag have a great potential, but the heavy oil quality limits large-scale economic development significantly. Ultrasonic is a typical representative of heavy oil viscosity reduction and anhydrous fracturing technology, and how to understand the action characteristics and mechanism of ultrasonic effect on reservoir is a critical issue to enhance shale oil production in the industrialized application of power ultrasonic. Therefore, the comparative experiments with different time of power ultrasonic loading were conducted to analyze the response mechanism of reservoir characteristics and the change of fluid mobility. The results indicate that the ultrasonic treatment is ameliorative to the pore-fracture structure, and the improvement degree is controlled by the mechanical vibration and cavitation of ultrasound. Generally, the location with weak cementation strength or relatively developed microcrack is preferred to pore expansion. After the ultrasonic treatment, the shale oil quality becomes lighter, and the transformation of shale oil from adsorbed to free, is accelerated due to enhanced fluidity. Pore-expanding effect and fluid mobility enhancement are essential aspects of the power ultrasonic loading to improve the recovery of low mature shale oil. The results of this study support the feasibility analysis of ultrasonic enhanced shale oil exploitation theoretically. 展开更多
关键词 ultrasonic Shale oil Reservoir properties Mobility Recovery
下载PDF
Modeling the hydration,viscosity and ultrasonic property evolution of class G cement up to 90℃ and 200 MPa by a scale factor method
19
作者 Li-Jun Sun Xue-Yu Pang +1 位作者 Siavash Ghabezloo Hai-Bing Yan 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2372-2385,共14页
A comprehensive experimental program has been performed to characterize the hydration and engineering property evolution of a class G oil well cement under various curing temperatures from 30 to 90℃.The progress of h... A comprehensive experimental program has been performed to characterize the hydration and engineering property evolution of a class G oil well cement under various curing temperatures from 30 to 90℃.The progress of hydration was monitored by isothermal calorimetry(atmospheric pressure);the viscosity evolution was measured using a high temperature and high pressure consistometer(up to 200 MPa);the ultrasonic property development was evaluated by an ultrasonic cement analyzer(up to 100 MPa).Test results indicate that the influences of curing temperature and pressure on the hydration,viscosity and ultrasonic property development can be modeled by a scale factor method that is similar to the maturity method used in the concrete industry.However,the key parameters of the scale factor model,namely the apparent activation energy and the apparent activation volume of cement showed obvious variations with test method and curing condition.The test results indicate that the curing temperature has a stronger effect on cement hydration rate than viscosity and ultrasonic property development rate,while the curing pressure has a much stronger influence on cement slurry properties before setting(viscosity)than after setting(ultrasonic property). 展开更多
关键词 Activation energy Activation volume Isothermal calorimetry CONSISTENCY ultrasonic property
下载PDF
A comparative study for determining rock joint normal stiffness with destructive uniaxial compression and nondestructive ultrasonic wave testing
20
作者 Zhenghu Zhang Jianbo Zhu Jianhui Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1700-1712,共13页
Rock joints are one of the vital discontinuities in a natural rock mass.How to accurately and conveniently determine joint normal stiffness is therefore significant in rock mechanics.Here,first,seven existing methods ... Rock joints are one of the vital discontinuities in a natural rock mass.How to accurately and conveniently determine joint normal stiffness is therefore significant in rock mechanics.Here,first,seven existing methods for determining joint normal stiffness were introduced and reviewed,among which MethodⅠ(the indirect measurement method),MethodⅡ(the direct determination method),MethodⅢ(the across-joint strain gauge measurement method)and MethodⅣ(the deformation measuring ring method)are via destructive uniaxial compression testing,while MethodⅤ(the best fitting method),MethodⅥ(the rapid evaluation method)and MethodⅦ(the effective modulus method)are through wave propagation principles and nondestructive ultrasonic testing.Subsequently,laboratory tests of intact and jointed sandstone specimens were conducted following the testing requirements and pro-cedures of those seven methods.A comparison among those methods was then performed.The results show that Method I,i.e.the benchmark method,is reliable and stable.MethodⅡhas a conceptual drawback,and its accuracy is acceptable at only very low stress levels.Relative errors in the results from MethodⅢare very large.With MethodⅣ,the testing results are sufficiently accurate despite the strict testing environment and complicated testing procedures.The results from MethodⅤare greatly unstable and significantly dependent on the natural frequency of the transducers.The joint normal stiffness determined with MethodⅥis stable and accurate,although data processing is complex.MethodⅦcould be adopted to determine the joint normal stiffness corresponding to the rock elastic deformation phase only.Consequently,it is suggested that MethodsⅠ,ⅣandⅥshould be adopted for the mea-surement of joint normal stiffness.The findings could be helpful in selecting an appropriate method to determine joint normal stiffness and,hence,to better solve discontinuous rock mass problems. 展开更多
关键词 Normal stiffness Rock joint Uniaxial compression ultrasonic wave
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部