Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s...Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.展开更多
Winter precipitation over eastern China displays remarkable interannual variability,which has been suggested to be closely related to El Niño-Southern Oscillation(ENSO).This study finds that ENSO impacts on easte...Winter precipitation over eastern China displays remarkable interannual variability,which has been suggested to be closely related to El Niño-Southern Oscillation(ENSO).This study finds that ENSO impacts on eastern China precipitation patterns exhibit obvious differences in early(November-December)and late(January-February)winter.In early winter,precipitation anomalies associated with ENSO are characterized by a monopole spatial distribution over eastern China.In contrast,the precipitation anomaly pattern in late winter remarkably changes,manifesting as a dipole spatial distribution.The noteworthy change in precipitation responses from early to late winter can be largely attributed to the seasonally varying Kuroshio anticyclonic anomalies.During the early winter of El Niño years,anticyclonic circulation anomalies appear both over the Philippine Sea and Kuroshio region,enhancing water vapor transport to the entirety of eastern China,thus contributing to more precipitation there.During the late winter of El Niño years,the anticyclone over the Philippine Sea is further strengthened,while the one over the Kuroshio dissipates,which could result in differing water vapor transport between northern and southern parts of eastern China and thus a dipole precipitation distribution.Roughly the opposite anomalies of circulation and precipitation are displayed during La Niña winters.Further analysis suggests that the seasonally-varying Kuroshio anticyclonic anomalies are possibly related to the enhancement of ENSO-related tropical central-eastern Pacific convection from early to late winter.These results have important implications for the seasonal-tointerannual predictability of winter precipitation over eastern China.展开更多
This study investigates the evolution of an extreme anomalous anticyclone(AA)event over Northeast Asia,which was one of the dominant circulation systems responsible for the catastrophic extreme precipitation event in ...This study investigates the evolution of an extreme anomalous anticyclone(AA)event over Northeast Asia,which was one of the dominant circulation systems responsible for the catastrophic extreme precipitation event in July 2021 in Henan,and further explores the significant impact of this AA on surface temperatures beneath it.The results indicate that this AA event over Northeast Asia was unprecedented in terms of intensity and duration.The AA was very persistent and extremely strong for 10 consecutive days from 13 to 22 July 2021.This long-lived and unprecedented AA led to the persistence of warmer surface temperatures beyond the temporal span of the pronounced 500-hPa anticyclonic signature as the surface air temperatures over land in Northeast Asia remained extremely warm through 29 July 2021.Moreover,the sea surface temperatures in the Sea of Japan/East Sea were extremely high for 30 consecutive days from 13 July to 11 August 2021,persisting well after the weakening or departure of this AA.These results emphasize the extreme nature of this AA over Northeast Asia in July 2021 and its role in multiple extreme climate events,even over remote regions.Furthermore,possible reasons for this long-lasting AA are explored,and it is suggested to be a byproduct of a teleconnection pattern over extratropical Eurasia during the first half of its life cycle,and of the Pacific-Japan teleconnection pattern during the latter half.展开更多
This paper explores strategies to cultivate high-level technical talents in vocational undergraduate colleges by analyzing their development,the essence of such talents,and proposing several key measures.Strategies in...This paper explores strategies to cultivate high-level technical talents in vocational undergraduate colleges by analyzing their development,the essence of such talents,and proposing several key measures.Strategies include optimizing professional settings and curricula,enhancing school-enterprise cooperation and the integration of industry-university-research,improving teaching staff quality and educational standards,and expanding international cooperation.The importance of policy support and funding and establishing robust quality assurance systems is emphasized for effectively cultivating skilled talents in vocational undergraduate colleges.展开更多
The studies in China on the formation of the summertime subtropical anticyclone on the climate timescale are reviewed. New insights in resent studies are introduced. It is stressed that either in the free atmosphere o...The studies in China on the formation of the summertime subtropical anticyclone on the climate timescale are reviewed. New insights in resent studies are introduced. It is stressed that either in the free atmosphere or in the planetary boundary, the descending arm of the Hadley cell cannot be considered as a mechanism for the formation of the subtropical anticyclone. Then the theories of thermal adaptation of the atmosphere to external thermal forcing and the potential vorticity forcing are developed to understand the formation of the subtropical anticyclone in the three-dimensional domain. Numerical experiments are designed to verify these theories. Results show that in the boreal summer, the formation of the strong South Asian High in the upper troposphere and the subtropical anticyclone over the western Pacific in the middle and lower troposphere is, to a great extent, due to the convective latent heating associated with the Asian monsoon, but affected by orography and the surface sensible heating over the continents. On the other hand, the formation of the subtropical anticyclone at the surface over the northern Pacific and in the upper troposphere over North America is mainly due to the strong surface sensible heating over North America, but affected by radiation cooling over the eastern North Pacific. Moreover, in the real atmosphere such individual thermal forcing is well organized. By considering the different diabatic heating in synthesis, a quadruple heating pattern is found over each subtropical continent and its adjacent oceans in summer. A distinct circulation pattern accompanies this heating pattern. The global summer subtropical heating and circulation may be viewed as 'mosaics' of such quadruplet heating and circulation patterns respectively. At last, some important issues for further research in understanding and predicting the variations of the subtropical anticyclone are raised.展开更多
The Asian summer monsoon (ASM) anticyclone is a dominant feature of the circulation in the upper troposphere- lower stratosphere (UTLS) during boreal summer, which is found to have persistent maxima in carbon mono...The Asian summer monsoon (ASM) anticyclone is a dominant feature of the circulation in the upper troposphere- lower stratosphere (UTLS) during boreal summer, which is found to have persistent maxima in carbon monoxide (CO). This enhancement is due to the upward transport of air with high CO from the planetary boundary layer (PBL), and confinement within the anticyclonic circulation. With rapid urbanization and industrialization, CO surface emissions are relatively high in the ASM region, especially in India and East China. To reveal the transport pathway of CO surface emissions over these two regions, and investigate the contribution of these to the CO distribution within the ASM anticyclone, a source sensitivity experiment was performed using the Weather Research and Forecasting (WRF) with chemistry model (WRF- Chem). According to the experiment results, the CO within the ASM anticyclone mostly comes from India, while the contribution from East China is insignificant. The result is mainly caused by the different transportation mechanisms. In India, CO transportation is primarily affected by convection. The surface air with high CO over India is directly transported to the upper troposphere, and then confined within the ASM anticyclone, leading to a maximum value in the UTLS region. The CO transportation over East China is affected by deep convection and large-scale circulation, resulting mainly in transportation to Korea, Japan, and the North Pacific Ocean, with little upward transport to the anticyclone, leading to a high CO value at 215 hPa over these regions.展开更多
The simulation characteristics of the seasonal evolution of subtropical anticyclones in the Northern Hemisphere are documented for the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2...The simulation characteristics of the seasonal evolution of subtropical anticyclones in the Northern Hemisphere are documented for the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, the Institute of Atmospheric Physics. An understanding of the seasonal evolution of the subtropical anticyclones is also addressed. Compared with the global analysis established by the European Centre for Medium-Range Forecasts, the ERA-40 global reanalysis data, the general features of subtropical anticyclones and their evolution are simulated well in both winter and summer, while in spring a pronounced bias in the generation of the South Asia Anticyclone(SAA) exists. Its main deviation in geopotential height from the reanalysis is consistent with the bias of temperature in the troposphere. It is found that condensation heating (CO) plays a dominant role in the seasonal development of the SAA and the subtropical anticyclone over the western Pacific (SAWP) in the middle troposphere. The CO biases in the model account for the biases in the establishment of the SAA in spring and the weaker strength of the SAA and the SAWP from spring to summer. CO is persistently overestimated in the central-east tropical Pacific from winter to summer, while it is underestimated over the area from the South China Sea to the western Pacific from spring to summer. Such biases generate an illusive anticyclonic gyre in the upper troposphere above the middle Pacific and delay the generation of the SAA over South Asia in April. In mid- summer, the simulated SAA is located farther north than in the ERA-40 data owing to excessively strong surface sensible heating (SE) to the north of the Tibetan Plateau. Whereas, the two surface subtropical anticyclones in the eastern oceans during spring to summer are controlled mainly by the surface SE over the two continents in the Northern Hemisphere, which are simulated reasonably well, albeit with their centers shifted westwards owing to the weaker longwave radiation cooling in the simulation associated with much weaker local stratiform cloud. Further improvements in the related parameterization of physical processes are therefore identified.展开更多
Based on the actual circulation structure as well as weather characters over East_Asia subtropical region in summer, by using three_dimension non_linear forced/dissipated dynamic model, the activities of subtropical a...Based on the actual circulation structure as well as weather characters over East_Asia subtropical region in summer, by using three_dimension non_linear forced/dissipated dynamic model, the activities of subtropical anticyclone over East_Asia have been studied and discussed. The potential enstrophy criteria of system stability have been derived and also been analysed. The criterion can provide useful reference for analysing and predicting subtropical anticyclone's extending/shrinking as well as corresponding weather over East_Asia in summer.展开更多
By employing the NCEP/NCAR reanalysis data sets(1 000 to 10 hPa,2.5°× 2.5°),the thermal forcing impacts are analyzed of an easterly vortex(shortened as EV) over the tropical upper troposphere on the qua...By employing the NCEP/NCAR reanalysis data sets(1 000 to 10 hPa,2.5°× 2.5°),the thermal forcing impacts are analyzed of an easterly vortex(shortened as EV) over the tropical upper troposphere on the quasi-horizontal movement of the Western Pacific Subtropical Anticyclone(shortened as WPS A) during 22-25 June 2003.The relevant mechanisms are discussed as well.It is shown that the distribution and intensity of the non-adiabatic effect near the EV result in the anomalous eastward retreat of the WPSA.The WPSA prefers extending to the colder region,i.e.,it moves toward the region in which the non-adiabatic heating is weakening or the cooling is strengthening.During the WPSA retreat,the apparent changes of non-adiabatic heating illustrate the characteristics of enhanced cooling in the east side of the EV.Meanwhile,the cooling in the west side exhibits a weakened eastward trend,most prominently at 300 hPa in the troposphere.The evidence on the factors causing the change in thermal condition is found:the most important contribution to the heating-rate trend is the vertical transport term,followed in turn by the local change in the heating rate term and the horizontal advection term.As a result,the atmospheric non-adiabatic heating generated by the vertical transport and local change discussed above is mainly connected to the retreat of the WPSA.展开更多
The deep reason of severe disaster weather with the relationship among the earth nutation,rotation and atmospheric change is explored based on the effective results about the disaster weather prediction of the long te...The deep reason of severe disaster weather with the relationship among the earth nutation,rotation and atmospheric change is explored based on the effective results about the disaster weather prediction of the long term made by the variation of the earth rotation in near 10 years. It is discussed the relationship between the subtropical anticyclone and subtropical easterlies to aim at the problem of high temperature and drought in the globe,further more,the comparison analysis has been made to the earth nutation and the variation of rotation. The research results show that the reasons of severe disaster weather not only are due to atmosphere itself,but have some variation information of earth movement which could be used for the weather forecast.展开更多
Sea ice outflow through Fram Strait is a vital component of the sea ice mass balance of the Arctic Ocean.Previous studies have examined the role of large-scale modes of atmospheric circulation variability such as the ...Sea ice outflow through Fram Strait is a vital component of the sea ice mass balance of the Arctic Ocean.Previous studies have examined the role of large-scale modes of atmospheric circulation variability such as the Arctic Oscillation,North Atlantic Oscillation,and Dipole Anomaly in the movement of sea ice.This review emphasizes the distinct impacts of synoptic weather on sea ice export as well as on other relevant fields(i.e.,sea ice concentration and sea ice drift).We identify deficiencies in previous studies that should be addressed,and we summarize potential research subjects that should be investigated to further our understanding of the relationship between synoptic weather and sea ice export via Fram Strait.For example,the connection between summertime anticyclones and weakened potential vorticity related to the observed extensive spring Eurasian snow and Siberian Ocean sea ice loss is of considerable interest.In-depth exploration of this type of geophysical mechanism will be particularly useful in assessment of the robustness of such linkages inferred through statistical analyses.展开更多
The task of vortex boundaries setting is one of the most complexes in examination of factors influencing on the vortex (circulation system) development and destruction. In this study a new approach of vortex analysis ...The task of vortex boundaries setting is one of the most complexes in examination of factors influencing on the vortex (circulation system) development and destruction. In this study a new approach of vortex analysis as a whole system is proposed. It is based on vorticity equation where vorticity (left part of the equation) is defined as time coefficients of EOF-decomposition, which is integrated indexes characterizing individual vortex dynamics. Right part of the vorticity equation depicts internal and external factors influencing on the vortex. It's approbation is done on the example of an arctic-subarctic circulation system including blocking anticyclone in winter 2012 which persisted for a long time over the Atlantic sector of the Arctic and led to the formation of the largest positive air temperature anomalies and the minimum ice cover area in the Barents and Kara seas in the entire history of regular observations. It is shown that the main factor in long-term maintenance of the blocking anticyclone over the Arctic was vorticity advection, which was stabilized by horizontal heat advection.展开更多
Tropical storms(TSs)can induce sea surface cooling,freshening,and phytoplankton blooms.The dissolved oxygen(DO)concentration response to TSs within an anticyclone is still unclear due to the rarity of in situ observat...Tropical storms(TSs)can induce sea surface cooling,freshening,and phytoplankton blooms.The dissolved oxygen(DO)concentration response to TSs within an anticyclone is still unclear due to the rarity of in situ observations.In this study,we investi-gate the variations in DO concentration attributed to TS‘Haitang’within an anticyclonic eddy in the northern South China Sea based on Chinese underwater glider data.DO concentrations have a higher value at the edge of eddy than at the core.Influenced by TS,DO concentrations decrease remarkably in the subsurface layer in all three regions(inside,edge,and outside of the anticyclonic eddy).The mean DO concentrations decrease more at the edge of the anticyclone than those inside the anticyclone.The recovery time of DO concentration after TS is around one week at the edge of the anticyclone and is>10 days within the eddy.Our observations show that the DO concentrations decrease above the subsurface chlorophyll a maxima layer.Quantitative analysis shows that variations in DO concentration are dominated by horizontal advection and vertical advection terms in the subsurface layer.展开更多
During the Asian summer monsoon(ASM)season,the process of stratosphere-troposphere exchange significantly affects the concentration and spatial distribution of chemical constituents in the upper troposphere and lower ...During the Asian summer monsoon(ASM)season,the process of stratosphere-troposphere exchange significantly affects the concentration and spatial distribution of chemical constituents in the upper troposphere and lower stratosphere(UTLS).However,the effect of the intensity of the Asian summer monsoon anticyclone(ASMA)on the horizontal distribution of chemical species within and around the ASMA,especially on the daily time scale,remains unclear.Here,the authors use the MERRA-2 reanalysis dataset and Aura Microwave Limb Sounder observations to study the impact of ASMA intensity on chemical distributions at 100 hPa during the ASM season.The intraseasonal variation of ASMA is classified into a strong period(SP)and weak period(WP),which refer to the periods when the intensity of ASMA remains strong and weak,respectively.The relatively low ozone(O_(3))region is found to be larger at 100 hPa during SPs,while its mixing ratio is lower than during WPs in summer.In June,analysis shows that the O_(3) horizontal distribution is mainly related to the intensity of AMSA,especially during SPs in June,while deep convections also impact the O_(3) horizontal distribution in July and August.These results indicate that the intraseasonal variation of the ASMA intensity coupled to deep convection can significantly affect the chemical distribution in the UTLS region during the ASM season.展开更多
By employing NCEP−NCAR 1°×1°reanalysis datasets,the mechanism of the easterlies vortex(EV)affecting the short-term movement of the subtropical anticyclone over the western Pacific(WPSA)in the mei-yu per...By employing NCEP−NCAR 1°×1°reanalysis datasets,the mechanism of the easterlies vortex(EV)affecting the short-term movement of the subtropical anticyclone over the western Pacific(WPSA)in the mei-yu period is examined using potential vorticity(PV)theory.The results show that when the EV and the westerlies vortex(WV)travel west/east to the same longitude of 120°E,the WPSA suddenly retreats.The EV and WV manifest as the downward transport of PV in the upper troposphere,and the variation of the corresponding high-value regions of PV significantly reflects the intensity changes of the EV and WV.The meridional propagation of PV causes the intensity change of the EV.The vertical movement on both sides of the EV is related to the position of the EV relative to the WPSA and the South Asian high(SAH).When the high PV in the easterlies and westerlies arrive at the same longitude in the meridional direction,the special circulation pattern will lower the position of PV isolines at the ridge line of the WPSA.Thus,the cyclonic circulation at the lower level will be strengthened,causing the abnormally eastward retreat of the WPSA.Analysis of the PV equation at the isentropic surface indicates that when the positive PV variation west of the EV intensifies,it connects with the positive PV variation east of the WV,forming a positive PV band and making the WPSA retreat abnormally.The horizontal advection of the PV has the greatest effect.The contribution of the vertical advection of PV and the vertical differential of heating is also positive,but the values are relatively small.The contribution of the residual was negative and it becomes smaller before and after the WPSA retreats.展开更多
The onset of South China Sea summer monsoon in 1998 occurred on May 21st. Using the U.S. National Centers for Environmental Prediction reanalysis data, this paper examines the physical process of the weakening of a su...The onset of South China Sea summer monsoon in 1998 occurred on May 21st. Using the U.S. National Centers for Environmental Prediction reanalysis data, this paper examines the physical process of the weakening of a subtropical anticyclone in West Pacific during the onset period using the Zwack-Okossi vorticity equation. Results show that during the pre-onset period, the positive vorticity advection in front of an upper tropospheric trough was the most dominant physical mechanism for the increase of the cyclonic vorticity on the 850-hPa layer over the South China Sea and its nearby region. The secondary contribution to the increase of the cyclonic vorticity was the warm-air advection. After the onset, the magnitude of the latent-heat warming term rapidly increased and its effect on the increase of the cyclonic vorticity was about the same as the positive-vorticity advection. The adiabatic term and divergence term contributed negatively to the increase of the cyclonic vorticity most of the time. Thus, the positive vorticity advection is the most important physical mechanism for the weakening of the West Pacific subtropical anticyclone over the South China Sea during the onset period.展开更多
The summertime anticyclonic circulation mode(SACM)is related to recent substantial loss of sea ice in the Arctic.This review outlines the potential causes of the SACM and considers its influence on sea ice depletion.L...The summertime anticyclonic circulation mode(SACM)is related to recent substantial loss of sea ice in the Arctic.This review outlines the potential causes of the SACM and considers its influence on sea ice depletion.Local triggers(i.e.,sea ice loss and sea surface temperature(SST)variation)and spatiotemporal teleconnections(i.e.,extratropical cyclone intrusion,tropical and mid-latitude SST anomalies,and winter atmospheric circulation preconditions)are discussed.The influence of the SACM on the dramatic loss of sea ice is emphasized through inspection of relevant dynamic(i.e.,Ekman drift and export)and thermodynamic(i.e.,moisture content,cloudiness,and associated changes in radiation)mechanisms.Moreover,the motivation for investigation of the underlying physical mechanisms of the SACM in response to the recent substantial sea ice depletionis also clarified through an attempt to better understand the shifting ice-atmosphere interaction in the Arctic during summer.Therecord low extent of sea ice in September 2012 could be reset in the near future if the SACM-like scenario continues to exist during summer in the Arctic troposphere.展开更多
Rapid urbanization and population growth have triggered an increase in urban housing demand and rising housing prices,which can influence the migration intention of high-level talents.Much work within the literature h...Rapid urbanization and population growth have triggered an increase in urban housing demand and rising housing prices,which can influence the migration intention of high-level talents.Much work within the literature has focused more on the migration of the general public.However,antecedents of migration intention and the impact of housing prices on the migration of high-level talents remain unclear.Therefore,based on the push-pull theory,this study investigates the influencing factors of talent migration intention and explores the role of housing prices.This study reveals a complex mechanism underlying migration decisions by using logistic regression models and survey data of high-level talents in the Pearl River Delta(PRD)megalopolis of China.The results indicate that:1)in high house-price regions,social integration is the primary push factor,and the main factors for retaining talents are the expectation of future work and intimate family relationships;2)in medium house-price regions,the main factors that attract talents are the current salary level and close family ties;3)in low house-price regions,living convenience is a determining factor in retaining talents.This study provides a new perspective for talent mobility research and offers valuable inputs for retaining and attracting talents in different economic development regions.Findings are of great significance for formulating talent introduction policies and forming a new pattern of rational spatial docking and effective allocation of human resources.展开更多
This paper analyzes some problems of the current teaching situation in the course High-level Programming Language,such as the lagging content of the course compared with technology development,the emphasis on theory r...This paper analyzes some problems of the current teaching situation in the course High-level Programming Language,such as the lagging content of the course compared with technology development,the emphasis on theory rather than on practice,the low enthusiasm of students for learning,and the weak practical ability of students.In response to the needs of enterprises for talents under the background of New Engineering,especially the cultivation of students’adaptability and practical abilities towards future industries to improve students’knowledge and problemsolving abilities to keep up with the modern technology,this paper proposes the ways and methods to reform and explore the teaching content and teaching methods by integrating industry and education,assisting teaching according to industrial demands,and lowering technology barriers of new technology.The practical effect is evaluated through a survey in class and the follow-up questionnaire after class,and the results show that the effect of the practice is effective.展开更多
基金Financial support for this work was provided by the General Program and Youth Fund Program of the National Natural Science Foundation of China(Grant Nos.42377175 and 42002292).
文摘Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.
基金supported by the National Key R&D Program of China (2022YFF0801602)the High-Performance Computing Center of Nanjing University of Information Science and Technology for their support of this work
文摘Winter precipitation over eastern China displays remarkable interannual variability,which has been suggested to be closely related to El Niño-Southern Oscillation(ENSO).This study finds that ENSO impacts on eastern China precipitation patterns exhibit obvious differences in early(November-December)and late(January-February)winter.In early winter,precipitation anomalies associated with ENSO are characterized by a monopole spatial distribution over eastern China.In contrast,the precipitation anomaly pattern in late winter remarkably changes,manifesting as a dipole spatial distribution.The noteworthy change in precipitation responses from early to late winter can be largely attributed to the seasonally varying Kuroshio anticyclonic anomalies.During the early winter of El Niño years,anticyclonic circulation anomalies appear both over the Philippine Sea and Kuroshio region,enhancing water vapor transport to the entirety of eastern China,thus contributing to more precipitation there.During the late winter of El Niño years,the anticyclone over the Philippine Sea is further strengthened,while the one over the Kuroshio dissipates,which could result in differing water vapor transport between northern and southern parts of eastern China and thus a dipole precipitation distribution.Roughly the opposite anomalies of circulation and precipitation are displayed during La Niña winters.Further analysis suggests that the seasonally-varying Kuroshio anticyclonic anomalies are possibly related to the enhancement of ENSO-related tropical central-eastern Pacific convection from early to late winter.These results have important implications for the seasonal-tointerannual predictability of winter precipitation over eastern China.
基金the National Natural Science Foundation of China(Grant Nos.42005029 and 42130504)the Research Program on Decision Services of China Meteorological Administration(Nos.JCZX2023026 and JCZX2022021).
文摘This study investigates the evolution of an extreme anomalous anticyclone(AA)event over Northeast Asia,which was one of the dominant circulation systems responsible for the catastrophic extreme precipitation event in July 2021 in Henan,and further explores the significant impact of this AA on surface temperatures beneath it.The results indicate that this AA event over Northeast Asia was unprecedented in terms of intensity and duration.The AA was very persistent and extremely strong for 10 consecutive days from 13 to 22 July 2021.This long-lived and unprecedented AA led to the persistence of warmer surface temperatures beyond the temporal span of the pronounced 500-hPa anticyclonic signature as the surface air temperatures over land in Northeast Asia remained extremely warm through 29 July 2021.Moreover,the sea surface temperatures in the Sea of Japan/East Sea were extremely high for 30 consecutive days from 13 July to 11 August 2021,persisting well after the weakening or departure of this AA.These results emphasize the extreme nature of this AA over Northeast Asia in July 2021 and its role in multiple extreme climate events,even over remote regions.Furthermore,possible reasons for this long-lasting AA are explored,and it is suggested to be a byproduct of a teleconnection pattern over extratropical Eurasia during the first half of its life cycle,and of the Pacific-Japan teleconnection pattern during the latter half.
文摘This paper explores strategies to cultivate high-level technical talents in vocational undergraduate colleges by analyzing their development,the essence of such talents,and proposing several key measures.Strategies include optimizing professional settings and curricula,enhancing school-enterprise cooperation and the integration of industry-university-research,improving teaching staff quality and educational standards,and expanding international cooperation.The importance of policy support and funding and establishing robust quality assurance systems is emphasized for effectively cultivating skilled talents in vocational undergraduate colleges.
基金supported by the Chinese Academy of Sciences(Grant No.ZKCX2 SW-210)the National Natural Science Foundation of China(Grant Nos.40135020,40221503,and 40023001).
文摘The studies in China on the formation of the summertime subtropical anticyclone on the climate timescale are reviewed. New insights in resent studies are introduced. It is stressed that either in the free atmosphere or in the planetary boundary, the descending arm of the Hadley cell cannot be considered as a mechanism for the formation of the subtropical anticyclone. Then the theories of thermal adaptation of the atmosphere to external thermal forcing and the potential vorticity forcing are developed to understand the formation of the subtropical anticyclone in the three-dimensional domain. Numerical experiments are designed to verify these theories. Results show that in the boreal summer, the formation of the strong South Asian High in the upper troposphere and the subtropical anticyclone over the western Pacific in the middle and lower troposphere is, to a great extent, due to the convective latent heating associated with the Asian monsoon, but affected by orography and the surface sensible heating over the continents. On the other hand, the formation of the subtropical anticyclone at the surface over the northern Pacific and in the upper troposphere over North America is mainly due to the strong surface sensible heating over North America, but affected by radiation cooling over the eastern North Pacific. Moreover, in the real atmosphere such individual thermal forcing is well organized. By considering the different diabatic heating in synthesis, a quadruple heating pattern is found over each subtropical continent and its adjacent oceans in summer. A distinct circulation pattern accompanies this heating pattern. The global summer subtropical heating and circulation may be viewed as 'mosaics' of such quadruplet heating and circulation patterns respectively. At last, some important issues for further research in understanding and predicting the variations of the subtropical anticyclone are raised.
基金supported by the National Basic Research Program of China (Grant No. 2010CB428602)the National Natural Science Foundation of China (Grant Nos. 41175040 and 91337214)
文摘The Asian summer monsoon (ASM) anticyclone is a dominant feature of the circulation in the upper troposphere- lower stratosphere (UTLS) during boreal summer, which is found to have persistent maxima in carbon monoxide (CO). This enhancement is due to the upward transport of air with high CO from the planetary boundary layer (PBL), and confinement within the anticyclonic circulation. With rapid urbanization and industrialization, CO surface emissions are relatively high in the ASM region, especially in India and East China. To reveal the transport pathway of CO surface emissions over these two regions, and investigate the contribution of these to the CO distribution within the ASM anticyclone, a source sensitivity experiment was performed using the Weather Research and Forecasting (WRF) with chemistry model (WRF- Chem). According to the experiment results, the CO within the ASM anticyclone mostly comes from India, while the contribution from East China is insignificant. The result is mainly caused by the different transportation mechanisms. In India, CO transportation is primarily affected by convection. The surface air with high CO over India is directly transported to the upper troposphere, and then confined within the ASM anticyclone, leading to a maximum value in the UTLS region. The CO transportation over East China is affected by deep convection and large-scale circulation, resulting mainly in transportation to Korea, Japan, and the North Pacific Ocean, with little upward transport to the anticyclone, leading to a high CO value at 215 hPa over these regions.
基金supported by the National Natural Science Foundation of China(Grant No.40925015)the CAS Strategic Priority Research Program(Grant No.XDA01020303)the National Program on Key Basic Research Project(Grant No.2010CB950400)
文摘The simulation characteristics of the seasonal evolution of subtropical anticyclones in the Northern Hemisphere are documented for the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, the Institute of Atmospheric Physics. An understanding of the seasonal evolution of the subtropical anticyclones is also addressed. Compared with the global analysis established by the European Centre for Medium-Range Forecasts, the ERA-40 global reanalysis data, the general features of subtropical anticyclones and their evolution are simulated well in both winter and summer, while in spring a pronounced bias in the generation of the South Asia Anticyclone(SAA) exists. Its main deviation in geopotential height from the reanalysis is consistent with the bias of temperature in the troposphere. It is found that condensation heating (CO) plays a dominant role in the seasonal development of the SAA and the subtropical anticyclone over the western Pacific (SAWP) in the middle troposphere. The CO biases in the model account for the biases in the establishment of the SAA in spring and the weaker strength of the SAA and the SAWP from spring to summer. CO is persistently overestimated in the central-east tropical Pacific from winter to summer, while it is underestimated over the area from the South China Sea to the western Pacific from spring to summer. Such biases generate an illusive anticyclonic gyre in the upper troposphere above the middle Pacific and delay the generation of the SAA over South Asia in April. In mid- summer, the simulated SAA is located farther north than in the ERA-40 data owing to excessively strong surface sensible heating (SE) to the north of the Tibetan Plateau. Whereas, the two surface subtropical anticyclones in the eastern oceans during spring to summer are controlled mainly by the surface SE over the two continents in the Northern Hemisphere, which are simulated reasonably well, albeit with their centers shifted westwards owing to the weaker longwave radiation cooling in the simulation associated with much weaker local stratiform cloud. Further improvements in the related parameterization of physical processes are therefore identified.
文摘Based on the actual circulation structure as well as weather characters over East_Asia subtropical region in summer, by using three_dimension non_linear forced/dissipated dynamic model, the activities of subtropical anticyclone over East_Asia have been studied and discussed. The potential enstrophy criteria of system stability have been derived and also been analysed. The criterion can provide useful reference for analysing and predicting subtropical anticyclone's extending/shrinking as well as corresponding weather over East_Asia in summer.
基金LASW State Key Laboratory Special Fund(2014LASW-A03)National Science Foundation of China(41475041)
文摘By employing the NCEP/NCAR reanalysis data sets(1 000 to 10 hPa,2.5°× 2.5°),the thermal forcing impacts are analyzed of an easterly vortex(shortened as EV) over the tropical upper troposphere on the quasi-horizontal movement of the Western Pacific Subtropical Anticyclone(shortened as WPS A) during 22-25 June 2003.The relevant mechanisms are discussed as well.It is shown that the distribution and intensity of the non-adiabatic effect near the EV result in the anomalous eastward retreat of the WPSA.The WPSA prefers extending to the colder region,i.e.,it moves toward the region in which the non-adiabatic heating is weakening or the cooling is strengthening.During the WPSA retreat,the apparent changes of non-adiabatic heating illustrate the characteristics of enhanced cooling in the east side of the EV.Meanwhile,the cooling in the west side exhibits a weakened eastward trend,most prominently at 300 hPa in the troposphere.The evidence on the factors causing the change in thermal condition is found:the most important contribution to the heating-rate trend is the vertical transport term,followed in turn by the local change in the heating rate term and the horizontal advection term.As a result,the atmospheric non-adiabatic heating generated by the vertical transport and local change discussed above is mainly connected to the retreat of the WPSA.
基金supported by National Natural Science Foundation of China through Grant( 60674074 )the foundation projects of 2008 LASW-B11,GYHY(QX)2007-6-26,GYHY(QX)2007-6-2, IHR2007K02,FiDAF-2-01, BJG200801,2007AA061901,QD62,KF(2006)11
文摘The deep reason of severe disaster weather with the relationship among the earth nutation,rotation and atmospheric change is explored based on the effective results about the disaster weather prediction of the long term made by the variation of the earth rotation in near 10 years. It is discussed the relationship between the subtropical anticyclone and subtropical easterlies to aim at the problem of high temperature and drought in the globe,further more,the comparison analysis has been made to the earth nutation and the variation of rotation. The research results show that the reasons of severe disaster weather not only are due to atmosphere itself,but have some variation information of earth movement which could be used for the weather forecast.
基金This work was funded by the Natural Science Foundation of China(Grant no.41406215)The authors thank the two anonymous reviewers for their constructive comments.
文摘Sea ice outflow through Fram Strait is a vital component of the sea ice mass balance of the Arctic Ocean.Previous studies have examined the role of large-scale modes of atmospheric circulation variability such as the Arctic Oscillation,North Atlantic Oscillation,and Dipole Anomaly in the movement of sea ice.This review emphasizes the distinct impacts of synoptic weather on sea ice export as well as on other relevant fields(i.e.,sea ice concentration and sea ice drift).We identify deficiencies in previous studies that should be addressed,and we summarize potential research subjects that should be investigated to further our understanding of the relationship between synoptic weather and sea ice export via Fram Strait.For example,the connection between summertime anticyclones and weakened potential vorticity related to the observed extensive spring Eurasian snow and Siberian Ocean sea ice loss is of considerable interest.In-depth exploration of this type of geophysical mechanism will be particularly useful in assessment of the robustness of such linkages inferred through statistical analyses.
文摘The task of vortex boundaries setting is one of the most complexes in examination of factors influencing on the vortex (circulation system) development and destruction. In this study a new approach of vortex analysis as a whole system is proposed. It is based on vorticity equation where vorticity (left part of the equation) is defined as time coefficients of EOF-decomposition, which is integrated indexes characterizing individual vortex dynamics. Right part of the vorticity equation depicts internal and external factors influencing on the vortex. It's approbation is done on the example of an arctic-subarctic circulation system including blocking anticyclone in winter 2012 which persisted for a long time over the Atlantic sector of the Arctic and led to the formation of the largest positive air temperature anomalies and the minimum ice cover area in the Barents and Kara seas in the entire history of regular observations. It is shown that the main factor in long-term maintenance of the blocking anticyclone over the Arctic was vorticity advection, which was stabilized by horizontal heat advection.
基金supported by the National Natural Science Foundation of China(No.41976002)the National Key R&D Plan of China(Nos.2017YFC0305904,2016YFC0301201).
文摘Tropical storms(TSs)can induce sea surface cooling,freshening,and phytoplankton blooms.The dissolved oxygen(DO)concentration response to TSs within an anticyclone is still unclear due to the rarity of in situ observations.In this study,we investi-gate the variations in DO concentration attributed to TS‘Haitang’within an anticyclonic eddy in the northern South China Sea based on Chinese underwater glider data.DO concentrations have a higher value at the edge of eddy than at the core.Influenced by TS,DO concentrations decrease remarkably in the subsurface layer in all three regions(inside,edge,and outside of the anticyclonic eddy).The mean DO concentrations decrease more at the edge of the anticyclone than those inside the anticyclone.The recovery time of DO concentration after TS is around one week at the edge of the anticyclone and is>10 days within the eddy.Our observations show that the DO concentrations decrease above the subsurface chlorophyll a maxima layer.Quantitative analysis shows that variations in DO concentration are dominated by horizontal advection and vertical advection terms in the subsurface layer.
基金sponsored by Strategic Priority Research Program of the Chinese Academy of Science[grant No.XDA17010106]the National Key Research and Development Program of China[grant Nos.2018YFC1505703 and 2018YFC1506704].
文摘During the Asian summer monsoon(ASM)season,the process of stratosphere-troposphere exchange significantly affects the concentration and spatial distribution of chemical constituents in the upper troposphere and lower stratosphere(UTLS).However,the effect of the intensity of the Asian summer monsoon anticyclone(ASMA)on the horizontal distribution of chemical species within and around the ASMA,especially on the daily time scale,remains unclear.Here,the authors use the MERRA-2 reanalysis dataset and Aura Microwave Limb Sounder observations to study the impact of ASMA intensity on chemical distributions at 100 hPa during the ASM season.The intraseasonal variation of ASMA is classified into a strong period(SP)and weak period(WP),which refer to the periods when the intensity of ASMA remains strong and weak,respectively.The relatively low ozone(O_(3))region is found to be larger at 100 hPa during SPs,while its mixing ratio is lower than during WPs in summer.In June,analysis shows that the O_(3) horizontal distribution is mainly related to the intensity of AMSA,especially during SPs in June,while deep convections also impact the O_(3) horizontal distribution in July and August.These results indicate that the intraseasonal variation of the ASMA intensity coupled to deep convection can significantly affect the chemical distribution in the UTLS region during the ASM season.
基金supported by the National Natural Science Foundation of China(Grant Nos.41775048,91937301,41775050 and 91637105)the National Key R&D Program of China(Grant No.2018YFC1507804)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0105).
文摘By employing NCEP−NCAR 1°×1°reanalysis datasets,the mechanism of the easterlies vortex(EV)affecting the short-term movement of the subtropical anticyclone over the western Pacific(WPSA)in the mei-yu period is examined using potential vorticity(PV)theory.The results show that when the EV and the westerlies vortex(WV)travel west/east to the same longitude of 120°E,the WPSA suddenly retreats.The EV and WV manifest as the downward transport of PV in the upper troposphere,and the variation of the corresponding high-value regions of PV significantly reflects the intensity changes of the EV and WV.The meridional propagation of PV causes the intensity change of the EV.The vertical movement on both sides of the EV is related to the position of the EV relative to the WPSA and the South Asian high(SAH).When the high PV in the easterlies and westerlies arrive at the same longitude in the meridional direction,the special circulation pattern will lower the position of PV isolines at the ridge line of the WPSA.Thus,the cyclonic circulation at the lower level will be strengthened,causing the abnormally eastward retreat of the WPSA.Analysis of the PV equation at the isentropic surface indicates that when the positive PV variation west of the EV intensifies,it connects with the positive PV variation east of the WV,forming a positive PV band and making the WPSA retreat abnormally.The horizontal advection of the PV has the greatest effect.The contribution of the vertical advection of PV and the vertical differential of heating is also positive,but the values are relatively small.The contribution of the residual was negative and it becomes smaller before and after the WPSA retreats.
文摘The onset of South China Sea summer monsoon in 1998 occurred on May 21st. Using the U.S. National Centers for Environmental Prediction reanalysis data, this paper examines the physical process of the weakening of a subtropical anticyclone in West Pacific during the onset period using the Zwack-Okossi vorticity equation. Results show that during the pre-onset period, the positive vorticity advection in front of an upper tropospheric trough was the most dominant physical mechanism for the increase of the cyclonic vorticity on the 850-hPa layer over the South China Sea and its nearby region. The secondary contribution to the increase of the cyclonic vorticity was the warm-air advection. After the onset, the magnitude of the latent-heat warming term rapidly increased and its effect on the increase of the cyclonic vorticity was about the same as the positive-vorticity advection. The adiabatic term and divergence term contributed negatively to the increase of the cyclonic vorticity most of the time. Thus, the positive vorticity advection is the most important physical mechanism for the weakening of the West Pacific subtropical anticyclone over the South China Sea during the onset period.
基金This work is financially supported by Laoshan Laboratory(Grant no.LSKJ202203003)National Natural Science Foundation of China(Grant nos.42276250,41976221)General Project of Natural Science Foundation of Shandong Province(Grant no.ZR2020MD100).
文摘The summertime anticyclonic circulation mode(SACM)is related to recent substantial loss of sea ice in the Arctic.This review outlines the potential causes of the SACM and considers its influence on sea ice depletion.Local triggers(i.e.,sea ice loss and sea surface temperature(SST)variation)and spatiotemporal teleconnections(i.e.,extratropical cyclone intrusion,tropical and mid-latitude SST anomalies,and winter atmospheric circulation preconditions)are discussed.The influence of the SACM on the dramatic loss of sea ice is emphasized through inspection of relevant dynamic(i.e.,Ekman drift and export)and thermodynamic(i.e.,moisture content,cloudiness,and associated changes in radiation)mechanisms.Moreover,the motivation for investigation of the underlying physical mechanisms of the SACM in response to the recent substantial sea ice depletionis also clarified through an attempt to better understand the shifting ice-atmosphere interaction in the Arctic during summer.Therecord low extent of sea ice in September 2012 could be reset in the near future if the SACM-like scenario continues to exist during summer in the Arctic troposphere.
基金Under the auspices of National Natural Science Foundation of China (No. 72274143) and (No.71874127)
文摘Rapid urbanization and population growth have triggered an increase in urban housing demand and rising housing prices,which can influence the migration intention of high-level talents.Much work within the literature has focused more on the migration of the general public.However,antecedents of migration intention and the impact of housing prices on the migration of high-level talents remain unclear.Therefore,based on the push-pull theory,this study investigates the influencing factors of talent migration intention and explores the role of housing prices.This study reveals a complex mechanism underlying migration decisions by using logistic regression models and survey data of high-level talents in the Pearl River Delta(PRD)megalopolis of China.The results indicate that:1)in high house-price regions,social integration is the primary push factor,and the main factors for retaining talents are the expectation of future work and intimate family relationships;2)in medium house-price regions,the main factors that attract talents are the current salary level and close family ties;3)in low house-price regions,living convenience is a determining factor in retaining talents.This study provides a new perspective for talent mobility research and offers valuable inputs for retaining and attracting talents in different economic development regions.Findings are of great significance for formulating talent introduction policies and forming a new pattern of rational spatial docking and effective allocation of human resources.
文摘This paper analyzes some problems of the current teaching situation in the course High-level Programming Language,such as the lagging content of the course compared with technology development,the emphasis on theory rather than on practice,the low enthusiasm of students for learning,and the weak practical ability of students.In response to the needs of enterprises for talents under the background of New Engineering,especially the cultivation of students’adaptability and practical abilities towards future industries to improve students’knowledge and problemsolving abilities to keep up with the modern technology,this paper proposes the ways and methods to reform and explore the teaching content and teaching methods by integrating industry and education,assisting teaching according to industrial demands,and lowering technology barriers of new technology.The practical effect is evaluated through a survey in class and the follow-up questionnaire after class,and the results show that the effect of the practice is effective.