Different drill-hole positions may produce different drainage results in low protective coal seams.To investigate this possibility,a 3D stope model is established,which covers three kinds of drill holes.The FLUENT com...Different drill-hole positions may produce different drainage results in low protective coal seams.To investigate this possibility,a 3D stope model is established,which covers three kinds of drill holes.The FLUENT computational fluid mechanics software is used to solve the mass,momentum and species conservation equations of the model.The spatial distributions of oxygen and methane was obtained by calculations and the drainage results of different drill-hole positions were compared.The results show that,from top to bottom,methane dilution by oxygen weakens gradually from the intake to the return side,and methane tends to float;methane and oxygen distribute horizontally.The high-level crossing holes contribute to better methane drainage and a greater level of control.Around these holes,the methane density decreases dramatically and a "half circle"distribution is formed.The methane density decreases on the whole,but a proportion of the methane moves back to deep into the goaf.The research findings provide theoretical grounds for methane drainage.展开更多
To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden ...To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden fissure, mining-induced stress distribution rules were analyzed. First, the development characteristics of mining-induced overburden fissure and the stress distribution law of the upper section of the working face were analyzed. Second, by analyzing the distribution law of vertical stress at different layers, the lateral distance of the LHDR was determined as 25 m. Third, by analyzing the surrounding rock deformation effect, stress distribution law, and overburden fissure distribution law of the LHDR at the heights of 20, 25, and 30 m away from the roof, the rational horizon of the LHDR was determined to be 25 m. Finally, an example of a LHDR located 25 m above the roof of the No. 2 coal seam and 25 m away from the No. 2-603 working face was presented. Results show that when the No. 2-603 coalface is being mined, the surrounding rocks lag 80 m or even further and the working face tends to be stable. The relative deformations of the roof and floor of the roadway and both of its walls were 583 and 450 mm,respectively. The reduction rate of the roadway section was 21.52%–25.32%. The section of the roadway was sufficient to extract the pressure relief gas in the overburden of the No. 2-605 working face. The average gas concentration and the pure volume at the branch pipeline were 24.8% and 22.3 m^3/min,respectively, showing that the position of high-level boreholes was reasonable.展开更多
Based on the equation of the gas flow continuity and state, Darcy law and Langmuir equation, the law of methane seepage in the wall of drainage roadway was studied. The governing equation of methane one-way seepage in...Based on the equation of the gas flow continuity and state, Darcy law and Langmuir equation, the law of methane seepage in the wall of drainage roadway was studied. The governing equation of methane one-way seepage in the seam was founded. By solving the equation, the calculation of methane seepage velocity in the coal wall was worked out. The result has really applied worth and will give beneficial references to re-lated research, it provides preventing coal and gas outbursts with theoretical gist.展开更多
The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applie...The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applied successfully. However, as the mining depth increasing, parts of the gas drainage system are not suitable for mines with high gas emissions. Because larger mining depths cause higher ground stresses, it becomes extremely difficult to maintain long gob side roadways. The greater deformation suffered by the roadway is not favorable lor borehole drilling for continuous gas drainage. To solve these problems, Y-type ventilation and gas drainage systems installed from a roof roadway were designed for drainage optimization. This system was designed based on a gas-enrichment zone analysis developed from mining the 11-2 coal seam in the Zhuji Mine at Huainan, Anhui Province, China. The method of Y-type gas extraction from different mine areas was applied to the panel 1112(1) in the Zhuji Mine. The absolute gas emission rate was up to 116.3 m^3/min with an average flow of 69.1 m^3/min at an average drainage concentration of nearly 85 %. After the Y-type method was adopted, the concentration of gas in the return air was 0.15 %-0.64 %, averaging 0.39 % with a ventilation rate of 2100-2750 m^3/min. The gas management system proved to be efficient, and the effective gas control allowed safe production to continue .展开更多
基金The authors gratefully acknowledge the financial support of the 2013 Science and Technological Projects of Henan Province(132102210448).
文摘Different drill-hole positions may produce different drainage results in low protective coal seams.To investigate this possibility,a 3D stope model is established,which covers three kinds of drill holes.The FLUENT computational fluid mechanics software is used to solve the mass,momentum and species conservation equations of the model.The spatial distributions of oxygen and methane was obtained by calculations and the drainage results of different drill-hole positions were compared.The results show that,from top to bottom,methane dilution by oxygen weakens gradually from the intake to the return side,and methane tends to float;methane and oxygen distribute horizontally.The high-level crossing holes contribute to better methane drainage and a greater level of control.Around these holes,the methane density decreases dramatically and a "half circle"distribution is formed.The methane density decreases on the whole,but a proportion of the methane moves back to deep into the goaf.The research findings provide theoretical grounds for methane drainage.
基金National Key Basic Research Program of China (973 Program) (No. 2015CB251600)the National Natural Science Foundation of China (Nos. 51327007, 51174157, and 51104118) for their support of this project
文摘To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden fissure, mining-induced stress distribution rules were analyzed. First, the development characteristics of mining-induced overburden fissure and the stress distribution law of the upper section of the working face were analyzed. Second, by analyzing the distribution law of vertical stress at different layers, the lateral distance of the LHDR was determined as 25 m. Third, by analyzing the surrounding rock deformation effect, stress distribution law, and overburden fissure distribution law of the LHDR at the heights of 20, 25, and 30 m away from the roof, the rational horizon of the LHDR was determined to be 25 m. Finally, an example of a LHDR located 25 m above the roof of the No. 2 coal seam and 25 m away from the No. 2-603 working face was presented. Results show that when the No. 2-603 coalface is being mined, the surrounding rocks lag 80 m or even further and the working face tends to be stable. The relative deformations of the roof and floor of the roadway and both of its walls were 583 and 450 mm,respectively. The reduction rate of the roadway section was 21.52%–25.32%. The section of the roadway was sufficient to extract the pressure relief gas in the overburden of the No. 2-605 working face. The average gas concentration and the pure volume at the branch pipeline were 24.8% and 22.3 m^3/min,respectively, showing that the position of high-level boreholes was reasonable.
文摘Based on the equation of the gas flow continuity and state, Darcy law and Langmuir equation, the law of methane seepage in the wall of drainage roadway was studied. The governing equation of methane one-way seepage in the seam was founded. By solving the equation, the calculation of methane seepage velocity in the coal wall was worked out. The result has really applied worth and will give beneficial references to re-lated research, it provides preventing coal and gas outbursts with theoretical gist.
基金Acknowledgments This work was supported by the National Nat- ural Science Foundation of China (41172147), the Anhui Province Science and Technology Research Plan (12010402110), and the Shanxi Province One Hundred Distinguished Professor Plan project.
文摘The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applied successfully. However, as the mining depth increasing, parts of the gas drainage system are not suitable for mines with high gas emissions. Because larger mining depths cause higher ground stresses, it becomes extremely difficult to maintain long gob side roadways. The greater deformation suffered by the roadway is not favorable lor borehole drilling for continuous gas drainage. To solve these problems, Y-type ventilation and gas drainage systems installed from a roof roadway were designed for drainage optimization. This system was designed based on a gas-enrichment zone analysis developed from mining the 11-2 coal seam in the Zhuji Mine at Huainan, Anhui Province, China. The method of Y-type gas extraction from different mine areas was applied to the panel 1112(1) in the Zhuji Mine. The absolute gas emission rate was up to 116.3 m^3/min with an average flow of 69.1 m^3/min at an average drainage concentration of nearly 85 %. After the Y-type method was adopted, the concentration of gas in the return air was 0.15 %-0.64 %, averaging 0.39 % with a ventilation rate of 2100-2750 m^3/min. The gas management system proved to be efficient, and the effective gas control allowed safe production to continue .