The acetylcholinesterase 2(AChE2)cloned from Plutella xylostella was first successfully expressed in methylotrophic yeast Pichia pastoris GS115.One transformant with high-level expression of the recombinant AChE(rA...The acetylcholinesterase 2(AChE2)cloned from Plutella xylostella was first successfully expressed in methylotrophic yeast Pichia pastoris GS115.One transformant with high-level expression of the recombinant AChE(rAChE,23.2 U mL-1in supernatant)was selected by plating on increasing concentrations of antibiotic G418 and by using a simple and specific chromogenic reaction with indoxyl acetate as a substrate.The maximum production of r ACh E reached about 11.8 mg of the enzyme protein per liter of culture.The r ACh E was first precipitated with ammonium sulfate(50%saturation)and then purified with procainamide affinity column chromatography.The enzyme was purified 12.1-fold with a yield of 22.8%and a high specific activity of 448.3 U mg-1.It was sensitive to inhibition by methamidophos and pirimicarb,the calculated 50% inhibitory concentration(IC50)values of the two pesticides were 0.357 and 0.888 mg L-1,respectively,and the calculated 70% inhibitory concentration(IC70)values were 0.521 and 0.839 mg L-1,respectively.The results suggested that it has a potential application in the detection of pesticide residues.展开更多
Using genomic DNA of bolting-tolerant lettuce as a template,flanking fragments of lettuce plastid rpo A gene were amplified and cloned by PCR. Targeting the sites of these two fragments,homologous recombinant fragment...Using genomic DNA of bolting-tolerant lettuce as a template,flanking fragments of lettuce plastid rpo A gene were amplified and cloned by PCR. Targeting the sites of these two fragments,homologous recombinant fragments of exogenous gene were integrated to construct lettuce plastid expression vector p Brpo AGFP,which harbored the expression cassette Prrn-gfp-aad A-Tpsb A. The results showed that the amplified flanking fragments were 1.2 and 1.1 kb in size. After sequencing,restriction digestion,ligation and transformation,lettuce plastid expression vector containing expression cassette Prrn-gfp-aad A-Tpsb A was constructed and confirmed by SDS-PAGE electrophoresis. The results of SDS-PAGE electrophoresis indicated that gfp gene was efficiently expressed under the regulation of plasmid specific promoter Prrn and terminator Tpsb A. GFP accounted for 45. 6% of total soluble proteins; inclusion bodies accounted for 47.5 % of bacterial proteins,which reached relatively high expression levels. The construction of lettuce plastid expression vector p Brpo A-GFP laid a solid foundation for establishment of subsequent lettuce plastid transformation system and genetic improvement of lettuce using various functional genes.展开更多
Objective:To investigate the effect of utilizing a molecular partner on high-level expression of Mxisca domestica(M.domestica) cecropin in Escherichia coli(E.coli) and to identify the expressed products.Methods:The ge...Objective:To investigate the effect of utilizing a molecular partner on high-level expression of Mxisca domestica(M.domestica) cecropin in Escherichia coli(E.coli) and to identify the expressed products.Methods:The genomic sequence of M.domestica cecropin A(MC) and M. domestica ubiquitin(UBI) were searched from Cenbank and amplified by reverse transcriptase polymerase chain reaction(RT-PCR).Two expression plasmids,pET32a-MC and pET32a-UBI-MC, were constructed and transferred into E.coli and were then induced by Isopropylβ-D-1- Thiogalactopyranoside(IPTG).The expression of the fusion proteins Trx-MC and Trx-UBI-MC was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE).Fusion protein Trx-MC was verified by Western blot analysis.The bactericidal activity of the purified MC was quantitatively determined using E.coli BL21(DE3).Results:The result showed that the fusion proteins were successively expressed in E.coli BL21 cells.A band at the expected position of 24 kDa representing the Trx-MC target protein was positivelystained,and the band at 4 kDa representing the hydrolysis of mature MC protein was also observed at the expected position. The expression levels of Trx-UBI-MC were higher than that of Trx-MC in E.coli.MC exhibited antimicrobial activity.Conclusions:With high-level expression of housefly cecropin A in E.coli using a fusion protein,MC exhibited antimicrobial activity.展开更多
Calmodulin (CaM), widely distributed in almost all eukaryotic cells, is a major intracellular calcium receptor responsible for mediating the Ca2 + signal to a multitude of different enzyme systems and is thought to pl...Calmodulin (CaM), widely distributed in almost all eukaryotic cells, is a major intracellular calcium receptor responsible for mediating the Ca2 + signal to a multitude of different enzyme systems and is thought to play a vital role in the regulation of cell proliferative cycle[1,2]. Recently, many studies showed that CaM is also present in extracellular fluid such as cell culture media and normal body fluid and has been reported to stimulate proliferation in a range of normal and neoplastic cells, apparently acting as an autocrine growth factor[3-11]. In 1988, Crocker et al reported for the first time that addition of extracellular pure pig brain CaM could promote DNA synthesis and cell [7]proliferation in K562 human leukaemic lymphocytes[7].After that, more and more research was done on extracellular CaM and evidences demonstrated that extracellular CaM could also stimulate cell proliferation in normal human umbilical vein endothelial cells[5], keratinocytes[4], suspension-cultured cells of Angelica Dahurica, etc[6]. CaM is a monomeric protein of 148 amino acids that contains four homologous Ca2 + -binding domains. CaM has been highly conserved throughout the evolution. Only 1 out of 148 amino acids of human CaM is different from that of fish CaM. Complementary DNAs encoding rat, eel, chicken, human, and trypanosome CaM have been cloned.展开更多
We have studied the expression of nm23(NDP) in 50 cases nasopharyngeal biopsies with anti-nm23(NDP) antibodies. As a result, the NDP positive rate in nasopharyngeal carcinoma (NPC) (95.54%) markedly increased (P<0....We have studied the expression of nm23(NDP) in 50 cases nasopharyngeal biopsies with anti-nm23(NDP) antibodies. As a result, the NDP positive rate in nasopharyngeal carcinoma (NPC) (95.54%) markedly increased (P<0.05), as compared with that in the normal nasopharyngeal epithelia (50.00-60.00%) and lymphocytes (52.00%). There were cytopfasmic type, nucleus type and mixed cytoplasmonucleus type according to NDP location in a cell. Their positive rates were 64.44%, 15.56% and 20.00% respectively in nasopharyngeal carcinoma. The expression of NDP had no relation with cervical lymphometastases in NPC, and the NDP positive rates had no significance between bilateral cervical lymphometastases and unilateral (P<0.05). But the NDP expression had most relation with the NPC staging. The expression rate and the intensity in Ⅲ or Ⅳ stage patients were markedly higher than that in II stage. It points out that the high-level expression of NDP had relation with the rapid cellular proliferation in NPC, and it may indicate the bad prognoses.展开更多
Objective To try making huZP3a^22-176 and huZP3b^177-348 polypeptides (representing an intact huZP^322-348 protein without its N-terminal signal peptide and C-terminal transmembrane domain ) express in E. coli at a ...Objective To try making huZP3a^22-176 and huZP3b^177-348 polypeptides (representing an intact huZP^322-348 protein without its N-terminal signal peptide and C-terminal transmembrane domain ) express in E. coli at a higher level Methods The cDNAs encoding huZP3a and huZP3b were obtained with PCR method. The pBV221 plasmid was used to construct thermo-inducible recombinant expression vector. Purification of two target expression products employed an improved method of preparative gel polyacrylamide gel electrophoresis. Results Two polypeptides of recombinant huZP3a (rhuZP3a) and recombinant huZP3b (rhuZP3b) were all expressed respectively in an E. coli BL21(DE3)pLysS strain at a higher level, which were recognized by two specific polyclonal antisera in Western blotting test which recognize a linear B cell epitope present in rhuZP3a or rhuZP3b respectively. Using the shake-flask method, approximately 5 mg of rhuZP3a and rhuZP3b with more than 95% relative homogeneity were harvested from 1 L culture respectively. Conclusion The availability of two rhuZP3 polypeptides will help in detecting the immunogenicities of rhuZP3a and rhuZP3b through animal experiments and confirming the function domain of non-glycosylated huZP3 to induce acrosome reaction in vitro.展开更多
Human interferon alpha-8(IFN-α8) is an important cytokine with multiple biological functions.A genetically engineered strain, E. coli XL1-Blue/pBm, was constructed by DNA recombination technology and characterized by...Human interferon alpha-8(IFN-α8) is an important cytokine with multiple biological functions.A genetically engineered strain, E. coli XL1-Blue/pBm, was constructed by DNA recombination technology and characterized by restriction analysis, DNA sequencing.展开更多
In order to investigate the enzymatic properties of the 4CL1 of Populus tomentosa, the recombinant expression vector pQE31-4CL 1 was constructed. The recombinant was identified by three restriction endonucleases, then...In order to investigate the enzymatic properties of the 4CL1 of Populus tomentosa, the recombinant expression vector pQE31-4CL 1 was constructed. The recombinant was identified by three restriction endonucleases, then the vector pQE31-4CL 1 was transformed into expression host M15 (pREP4) and induced by isopropyl-a-D-thiogalactoside (IPTG) to express 60 kD fused protein Pt4CL1. The biologically active Pt4CL1, expressed as soluble protein, was achieved with 0.6 mmol'L-1 IPTG induction as the expression temperature declined from 37 to 28℃. The 6-His tag facilitates affinity binding to Ni^2+-nitrolotriacetic acid (NTA) and enables one-step purification to acquire the molecular SDS-PAGE electrophoresis purity of the active 4CL1 protein by agarose coupled with Ni^2+-NTA affinity chromatography. The optimal substrate for Pt4CL 1 was 4-coumarate.展开更多
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However...Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.展开更多
Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study lever...Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study leverages computational tools to dissect the differential gene expression profiles in retinoblastoma. Methods: Employing an in silico approach, we analyzed gene expression data from public repositories by applying rigorous statistical models, including limma and de seq 2, for identifying differentially expressed genes DEGs. Our findings were validated through cross-referencing with independent datasets and existing literature. We further employed functional annotation and pathway analysis to elucidate the biological significance of these DEGs. Results: Our computational analysis confirmed the dysregulation of key retinoblastoma-associated genes. In comparison to normal retinal tissue, RB1 exhibited a 2.5-fold increase in expression (adjusted p Conclusions: Our analysis reinforces the critical genetic alterations known in retinoblastoma and unveils new avenues for research into the disease’s molecular basis. The discovery of chemoresistance markers and immune-related genes opens potential pathways for personalized treatment strategies. The study’s outcomes emphasize the power of in silico analyses in unraveling complex cancer genomics.展开更多
Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression relat...Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression related to stress and ATP-binding cassette(ABC)transporters in Tetrahymena thermophila were investigated.The result showed that the 96-h IC_(50)of PYR against T.thermophila was 17.2 mg/L.Moreover,PYR inhibited the growth of T.thermophila in concentration-or time-dependent manner.A morphological study revealed that the shape and size of T.thermophila changed,and damage of cell membrane surface was observed by scanning electron microscopy after 96 h of PYR exposure.The activities of superoxide dismutase(SOD)and catalase(CAT)increased throughout the experiment.In contrast,the glutathione(GSH)content was increased at 24 h and 48 h of exposure and decreased at 96 h.Moreover,a significant increase in malondialdehyde(MDA)level was observed in T.thermophila after96 h of exposure.Furthermore,PYR upregulated the HSP703,HSP705,GPx2,and ABAC15 gene expression in the 0.1–5-mg/L groups and downregulated the HSP704,HSP90,TGR,and ABCC52 mRNA levels at 96 h of exposure.These results suggest that PYR may exert adverse effects on T.thermophila by inducing oxidative stress and changing the gene expression related to ABC transporters and stress,which may enrich the understanding of the toxicity mechanism of PYR in aquatic organisms and provide reference data for aquatic ecological risk assessments.展开更多
Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby ...Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress(OS)on the animals.To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation,a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum.Methods Twenty-four Guanzhong dairy goats(38.1±1.20 kg)were randomly assigned to two dietary treatments:one containing silage inoculated with L.plantarum MTD/1(RSMTD-1),and the other containing silage inoculated with high antioxidant activity L.plantarum 24-7(ES24-7).Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1.The ES24-7 diet elevated the total antioxidant capacity(T-AOC),superoxide dismutase(SOD),glutathione peroxi-dase(GSH-Px),and catalase(CAT)activities in milk,serum,and feces of lactating goats(with the exception of T-AOC in milk).Additionally,the diet containing ES24-7 inoculated silage enhanced casein yield,milk free fatty acid(FFA)content,and vitamin A level in the goats’milk.Furthermore,an increase of immunoglobulin(Ig)A,IgG,IgM,inter-leukin(IL)-4,and IL-10 concentrations were observed,coupled with a reduction in IL-1β,IL-2,IL-6,interferon(IFN)-γ,and tumor necrosis factor(TNF)-αconcentrations in the serum of lactating goats fed ES24-7.Higher concentrations of total volatile fatty acid(VFA),acetate,and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage.Moreover,the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2(NFE2L2),beta-carotene oxygenase 1(BCO1),SOD1,SOD2,SOD3,GPX2,CAT,glu-tathione-disulfide reductase(GSR),and heme oxygenase 1(HMOX1)genes in the mammary gland,while decreased the levels of NADPH oxidase 4(NOX4),TNF,and interferon gamma(IFNG).Conclusions These findings indicated that feeding L.plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.展开更多
The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands signific...The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands significant human,time,and financial resources.Although active learning methods have mitigated the dependency on extensive labeled data,a cold-start problem persists in small to medium-sized expression recognition datasets.This issue arises because the initial labeled data often fails to represent the full spectrum of facial expression characteristics.This paper introduces an active learning approach that integrates uncertainty estimation,aiming to improve the precision of facial expression recognition regardless of dataset scale variations.The method is divided into two primary phases.First,the model undergoes self-supervised pre-training using contrastive learning and uncertainty estimation to bolster its feature extraction capabilities.Second,the model is fine-tuned using the prior knowledge obtained from the pre-training phase to significantly improve recognition accuracy.In the pretraining phase,the model employs contrastive learning to extract fundamental feature representations from the complete unlabeled dataset.These features are then weighted through a self-attention mechanism with rank regularization.Subsequently,data from the low-weighted set is relabeled to further refine the model’s feature extraction ability.The pre-trained model is then utilized in active learning to select and label information-rich samples more efficiently.Experimental results demonstrate that the proposed method significantly outperforms existing approaches,achieving an improvement in recognition accuracy of 5.09%and 3.82%over the best existing active learning methods,Margin,and Least Confidence methods,respectively,and a 1.61%improvement compared to the conventional segmented active learning method.展开更多
Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein Psb...Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein PsbX has been identified in PSII,which is associated with the oxygen-evolving complex.The expression of PsbX gene protein is regulated by light.PsbX’s central role involves the regulation of PSII,facilitating the binding of quinone molecules to the Qb(PsbA)site,and it additionally plays a crucial role in optimizing the efficiency of photosynthesis.Despite these insights,a comprehensive understanding of the PsbX gene’s functions has remained elusive.Results In this study,we identified ten PsbX genes in Gossypium hirsutum L.The phylogenetic analysis results showed that 40 genes from nine species were classified into one clade.The resulting sequence logos exhibited substantial conservation across the N and C terminals at multiple sites among all Gossypium species.Furthermore,the ortholo-gous/paralogous,Ka/Ks ratio revealed that cotton PsbX genes subjected to positive as well as purifying selection pressure might lead to limited divergence,which resulted in the whole genome and segmental duplication.The expression patterns of GhPsbX genes exhibited variations across specific tissues,as indicated by the analysis.Moreover,the expression of GhPsbX genes could potentially be regulated in response to salt,intense light,and drought stresses.Therefore,GhPsbX genes may play a significant role in the modulation of photosynthesis under adverse abiotic conditions.Conclusion We examined the structure and function of PsbX gene family very first by using comparative genom-ics and systems biology approaches in cotton.It seems that PsbX gene family plays a vital role during the growth and development of cotton under stress conditions.Collectively,the results of this study provide basic information to unveil the molecular and physiological function of PsbX genes of cotton plants.展开更多
E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that m...E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that mediates the ubiquitination of BOS1 (Botrytis susceptible1), a transcription factor involved in stress and pathogen responses. Although BOI is an E3 ligase, there are reports to show that BOI interacts with target proteins such as DELLAs or CONSTANS to repress gibberellin responses and flowering without the degradation of the target proteins. In this article, we utilize diversified methods to comprehensively analyze the expression pattern, interaction network and function of BOI gene. Firstly, 1800 bp upstream region of BOI gene from Arabidopsis thaliana (Arabidopsis) genome was isolated, and fused GUS reporter gene. The resulting expression cassette was introduced into wild-type Arabidopsis through Agrobacterium-mediated transformation. The result demonstrated that BOI gene was expressed predominantly in leaves, siliques, young roots, and flowering tissues, indicating that BOI gene may be involved in multiple processes in plant growth and development in Arabidopsis. Besides, eight candidate interacting proteins were obtained from the Arabidopsis cDNA library via yeast two-hybrid technology, including EXO70E2 (AT5G61010), WRKY7 (AT4G24240), WRKY11 (AT4G31550), WRKY17 (AT2G24570), UBP20 (AT4G17895), L5 (AT1G12290), SAUR9 (AT4G36110) and TCP21 (AT5G08330). Functional analysis of these candidate interacting proteins manifested that they related to multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. In addition, the results of the transient assay proclaimed that BOI protein affects the protein stability of EXO70E2 and L5 through its E3 ubiquitin ligase activity. Our results provide novel clues for a better understanding of molecular mechanisms underlying BOI-mediated regulations.展开更多
Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, Caps...Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, CapsNet overcomesthese limitations by vectorizing information through increased directionality and magnitude, ensuring that spatialinformation is not overlooked. Therefore, this study proposes a novel expression recognition technique calledCAPSULE-VGG, which combines the strengths of CapsNet and convolutional neural networks. By refining andintegrating features extracted by a convolutional neural network before introducing theminto CapsNet, ourmodelenhances facial recognition capabilities. Compared to traditional neural network models, our approach offersfaster training pace, improved convergence speed, and higher accuracy rates approaching stability. Experimentalresults demonstrate that our method achieves recognition rates of 74.14% for the FER2013 expression dataset and99.85% for the CK+ expression dataset. By contrasting these findings with those obtained using conventionalexpression recognition techniques and incorporating CapsNet’s advantages, we effectively address issues associatedwith convolutional neural networks while increasing expression identification accuracy.展开更多
Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various he...Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.展开更多
Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome datab...Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance.展开更多
Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based...Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based models for classifying cancer types using machine learning techniques. By applying Log2 normalization to gene expression data and conducting Wilcoxon rank sum tests, the researchers employed various classifiers and Incremental Feature Selection (IFS) strategies. The study culminated in two optimized models using the XGBoost classifier, comprising 10 and 74 genes respectively. The 10-gene model, due to its simplicity, is proposed for easier clinical implementation, whereas the 74-gene model exhibited superior performance in terms of Specificity, AUC (Area Under the Curve), and Precision. These models were evaluated based on their sensitivity, AUC, and specificity, aiming to achieve high sensitivity and AUC while maintaining reasonable specificity.展开更多
The cytokinin oxidase/dehydrogenase(CKX)enzyme is essential for controlling thefluctuating levels of endogen-ous cytokinin(CK)and has a significant impact on different aspects of plant growth and development.Nonethe-les...The cytokinin oxidase/dehydrogenase(CKX)enzyme is essential for controlling thefluctuating levels of endogen-ous cytokinin(CK)and has a significant impact on different aspects of plant growth and development.Nonethe-less,there is limited knowledge about CKX genes in tomato(Solanum lycopersicum L.).Here we performed genome-wide identification and analysis of nine SlCKX family members in tomatoes using bioinformatics tools.The results revealed that nine SlCKX genes were unevenly distributed onfive chromosomes(Chr.1,Chr.4,Chr.8,Chr.10,and Chr.12).The amino acid length,isoelectric points,and molecular weight of the nine SlCKX proteins ranged from 453 to 553,5.77 to 8.59,and 51.661 to 62.494 kD,respectively.Subcellular localization analysis indi-cated that SlCKX2 proteins were located in both the vacuole and cytoplasmic matrix;SlCKX3 and SlCKX5 pro-teins were located in the vacuole;and SlCKX1,4,6,7,8,and 9 proteins were located in the cytoplasmic matrix.Furthermore,we observed differences in the gene structures and phylogenetic relationships of SlCKX proteins among different members.SlCKX1-9 were positioned on two out of the three branches of the CKX phylogenetic tree in the multispecies phylogenetic tree construction,revealing their strong conservation within phylogenetic subgroups.Unique patterns of expression of CKX genes were noticed in callus cultures exposed to varying con-centrations of exogenous ZT,suggesting their roles in specific developmental and physiological functions in the regeneration system.These results may facilitate subsequent functional analysis of SlCKX genes and provide valu-able insights for establishing an efficient regeneration system for tomatoes.展开更多
基金supported by a grant from the Public Benefit Research Foundation of China (200903052)the Science and Technology Department of Guangdong Province, China (2009A020101003)
文摘The acetylcholinesterase 2(AChE2)cloned from Plutella xylostella was first successfully expressed in methylotrophic yeast Pichia pastoris GS115.One transformant with high-level expression of the recombinant AChE(rAChE,23.2 U mL-1in supernatant)was selected by plating on increasing concentrations of antibiotic G418 and by using a simple and specific chromogenic reaction with indoxyl acetate as a substrate.The maximum production of r ACh E reached about 11.8 mg of the enzyme protein per liter of culture.The r ACh E was first precipitated with ammonium sulfate(50%saturation)and then purified with procainamide affinity column chromatography.The enzyme was purified 12.1-fold with a yield of 22.8%and a high specific activity of 448.3 U mg-1.It was sensitive to inhibition by methamidophos and pirimicarb,the calculated 50% inhibitory concentration(IC50)values of the two pesticides were 0.357 and 0.888 mg L-1,respectively,and the calculated 70% inhibitory concentration(IC70)values were 0.521 and 0.839 mg L-1,respectively.The results suggested that it has a potential application in the detection of pesticide residues.
基金Supported by Natural Science Foundation of Yunnan Province(2011FB049)National Natural Science Foundation of China(31260481,31460516)+2 种基金Fund of Yunnan Education Department(2013Y251)Fund of the Department of Life Science and Technology,Kunming University(GXKM201505)Talent Fund for PhD(YJL11015)
文摘Using genomic DNA of bolting-tolerant lettuce as a template,flanking fragments of lettuce plastid rpo A gene were amplified and cloned by PCR. Targeting the sites of these two fragments,homologous recombinant fragments of exogenous gene were integrated to construct lettuce plastid expression vector p Brpo AGFP,which harbored the expression cassette Prrn-gfp-aad A-Tpsb A. The results showed that the amplified flanking fragments were 1.2 and 1.1 kb in size. After sequencing,restriction digestion,ligation and transformation,lettuce plastid expression vector containing expression cassette Prrn-gfp-aad A-Tpsb A was constructed and confirmed by SDS-PAGE electrophoresis. The results of SDS-PAGE electrophoresis indicated that gfp gene was efficiently expressed under the regulation of plasmid specific promoter Prrn and terminator Tpsb A. GFP accounted for 45. 6% of total soluble proteins; inclusion bodies accounted for 47.5 % of bacterial proteins,which reached relatively high expression levels. The construction of lettuce plastid expression vector p Brpo A-GFP laid a solid foundation for establishment of subsequent lettuce plastid transformation system and genetic improvement of lettuce using various functional genes.
基金supported by grants from National Natural Science Foundation of China(No.30972566,3087198)
文摘Objective:To investigate the effect of utilizing a molecular partner on high-level expression of Mxisca domestica(M.domestica) cecropin in Escherichia coli(E.coli) and to identify the expressed products.Methods:The genomic sequence of M.domestica cecropin A(MC) and M. domestica ubiquitin(UBI) were searched from Cenbank and amplified by reverse transcriptase polymerase chain reaction(RT-PCR).Two expression plasmids,pET32a-MC and pET32a-UBI-MC, were constructed and transferred into E.coli and were then induced by Isopropylβ-D-1- Thiogalactopyranoside(IPTG).The expression of the fusion proteins Trx-MC and Trx-UBI-MC was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE).Fusion protein Trx-MC was verified by Western blot analysis.The bactericidal activity of the purified MC was quantitatively determined using E.coli BL21(DE3).Results:The result showed that the fusion proteins were successively expressed in E.coli BL21 cells.A band at the expected position of 24 kDa representing the Trx-MC target protein was positivelystained,and the band at 4 kDa representing the hydrolysis of mature MC protein was also observed at the expected position. The expression levels of Trx-UBI-MC were higher than that of Trx-MC in E.coli.MC exhibited antimicrobial activity.Conclusions:With high-level expression of housefly cecropin A in E.coli using a fusion protein,MC exhibited antimicrobial activity.
基金the Natural Science Fundation of Jiangsu Province,№BK95141307
文摘Calmodulin (CaM), widely distributed in almost all eukaryotic cells, is a major intracellular calcium receptor responsible for mediating the Ca2 + signal to a multitude of different enzyme systems and is thought to play a vital role in the regulation of cell proliferative cycle[1,2]. Recently, many studies showed that CaM is also present in extracellular fluid such as cell culture media and normal body fluid and has been reported to stimulate proliferation in a range of normal and neoplastic cells, apparently acting as an autocrine growth factor[3-11]. In 1988, Crocker et al reported for the first time that addition of extracellular pure pig brain CaM could promote DNA synthesis and cell [7]proliferation in K562 human leukaemic lymphocytes[7].After that, more and more research was done on extracellular CaM and evidences demonstrated that extracellular CaM could also stimulate cell proliferation in normal human umbilical vein endothelial cells[5], keratinocytes[4], suspension-cultured cells of Angelica Dahurica, etc[6]. CaM is a monomeric protein of 148 amino acids that contains four homologous Ca2 + -binding domains. CaM has been highly conserved throughout the evolution. Only 1 out of 148 amino acids of human CaM is different from that of fish CaM. Complementary DNAs encoding rat, eel, chicken, human, and trypanosome CaM have been cloned.
文摘We have studied the expression of nm23(NDP) in 50 cases nasopharyngeal biopsies with anti-nm23(NDP) antibodies. As a result, the NDP positive rate in nasopharyngeal carcinoma (NPC) (95.54%) markedly increased (P<0.05), as compared with that in the normal nasopharyngeal epithelia (50.00-60.00%) and lymphocytes (52.00%). There were cytopfasmic type, nucleus type and mixed cytoplasmonucleus type according to NDP location in a cell. Their positive rates were 64.44%, 15.56% and 20.00% respectively in nasopharyngeal carcinoma. The expression of NDP had no relation with cervical lymphometastases in NPC, and the NDP positive rates had no significance between bilateral cervical lymphometastases and unilateral (P<0.05). But the NDP expression had most relation with the NPC staging. The expression rate and the intensity in Ⅲ or Ⅳ stage patients were markedly higher than that in II stage. It points out that the high-level expression of NDP had relation with the rapid cellular proliferation in NPC, and it may indicate the bad prognoses.
基金This work was supported by grant (No. 03JG05014) from the Population Family Planning Commission ofShanghai. China and the Medical and Health Science Research Foundation of Zhejiang Province(No. 2004A002)
文摘Objective To try making huZP3a^22-176 and huZP3b^177-348 polypeptides (representing an intact huZP^322-348 protein without its N-terminal signal peptide and C-terminal transmembrane domain ) express in E. coli at a higher level Methods The cDNAs encoding huZP3a and huZP3b were obtained with PCR method. The pBV221 plasmid was used to construct thermo-inducible recombinant expression vector. Purification of two target expression products employed an improved method of preparative gel polyacrylamide gel electrophoresis. Results Two polypeptides of recombinant huZP3a (rhuZP3a) and recombinant huZP3b (rhuZP3b) were all expressed respectively in an E. coli BL21(DE3)pLysS strain at a higher level, which were recognized by two specific polyclonal antisera in Western blotting test which recognize a linear B cell epitope present in rhuZP3a or rhuZP3b respectively. Using the shake-flask method, approximately 5 mg of rhuZP3a and rhuZP3b with more than 95% relative homogeneity were harvested from 1 L culture respectively. Conclusion The availability of two rhuZP3 polypeptides will help in detecting the immunogenicities of rhuZP3a and rhuZP3b through animal experiments and confirming the function domain of non-glycosylated huZP3 to induce acrosome reaction in vitro.
文摘Human interferon alpha-8(IFN-α8) is an important cytokine with multiple biological functions.A genetically engineered strain, E. coli XL1-Blue/pBm, was constructed by DNA recombination technology and characterized by restriction analysis, DNA sequencing.
文摘In order to investigate the enzymatic properties of the 4CL1 of Populus tomentosa, the recombinant expression vector pQE31-4CL 1 was constructed. The recombinant was identified by three restriction endonucleases, then the vector pQE31-4CL 1 was transformed into expression host M15 (pREP4) and induced by isopropyl-a-D-thiogalactoside (IPTG) to express 60 kD fused protein Pt4CL1. The biologically active Pt4CL1, expressed as soluble protein, was achieved with 0.6 mmol'L-1 IPTG induction as the expression temperature declined from 37 to 28℃. The 6-His tag facilitates affinity binding to Ni^2+-nitrolotriacetic acid (NTA) and enables one-step purification to acquire the molecular SDS-PAGE electrophoresis purity of the active 4CL1 protein by agarose coupled with Ni^2+-NTA affinity chromatography. The optimal substrate for Pt4CL 1 was 4-coumarate.
基金financially supported by the National Natural Science Foundation of China,No.81303115,81774042 (both to XC)the Pearl River S&T Nova Program of Guangzhou,No.201806010025 (to XC)+3 种基金the Specialty Program of Guangdong Province Hospital of Chinese Medicine of China,No.YN2018ZD07 (to XC)the Natural Science Foundatior of Guangdong Province of China,No.2023A1515012174 (to JL)the Science and Technology Program of Guangzhou of China,No.20210201 0268 (to XC),20210201 0339 (to JS)Guangdong Provincial Key Laboratory of Research on Emergency in TCM,Nos.2018-75,2019-140 (to JS)
文摘Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
文摘Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study leverages computational tools to dissect the differential gene expression profiles in retinoblastoma. Methods: Employing an in silico approach, we analyzed gene expression data from public repositories by applying rigorous statistical models, including limma and de seq 2, for identifying differentially expressed genes DEGs. Our findings were validated through cross-referencing with independent datasets and existing literature. We further employed functional annotation and pathway analysis to elucidate the biological significance of these DEGs. Results: Our computational analysis confirmed the dysregulation of key retinoblastoma-associated genes. In comparison to normal retinal tissue, RB1 exhibited a 2.5-fold increase in expression (adjusted p Conclusions: Our analysis reinforces the critical genetic alterations known in retinoblastoma and unveils new avenues for research into the disease’s molecular basis. The discovery of chemoresistance markers and immune-related genes opens potential pathways for personalized treatment strategies. The study’s outcomes emphasize the power of in silico analyses in unraveling complex cancer genomics.
基金the Key Scientific Research Projects of Henan Province to College Youth Backbone Teacher(No.2021118)the National Key Research and Development Program of China(No.2021YFE0112000)。
文摘Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression related to stress and ATP-binding cassette(ABC)transporters in Tetrahymena thermophila were investigated.The result showed that the 96-h IC_(50)of PYR against T.thermophila was 17.2 mg/L.Moreover,PYR inhibited the growth of T.thermophila in concentration-or time-dependent manner.A morphological study revealed that the shape and size of T.thermophila changed,and damage of cell membrane surface was observed by scanning electron microscopy after 96 h of PYR exposure.The activities of superoxide dismutase(SOD)and catalase(CAT)increased throughout the experiment.In contrast,the glutathione(GSH)content was increased at 24 h and 48 h of exposure and decreased at 96 h.Moreover,a significant increase in malondialdehyde(MDA)level was observed in T.thermophila after96 h of exposure.Furthermore,PYR upregulated the HSP703,HSP705,GPx2,and ABAC15 gene expression in the 0.1–5-mg/L groups and downregulated the HSP704,HSP90,TGR,and ABCC52 mRNA levels at 96 h of exposure.These results suggest that PYR may exert adverse effects on T.thermophila by inducing oxidative stress and changing the gene expression related to ABC transporters and stress,which may enrich the understanding of the toxicity mechanism of PYR in aquatic organisms and provide reference data for aquatic ecological risk assessments.
基金supported by the National Natural Science Foundation of China (No. U20A2002)China Postdoctoral Science Foundation (No. 2023T160284)recipient of a research productivity fellowship from CNPq (National Council of Scientific and Technological Development) in Brazil
文摘Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress(OS)on the animals.To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation,a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum.Methods Twenty-four Guanzhong dairy goats(38.1±1.20 kg)were randomly assigned to two dietary treatments:one containing silage inoculated with L.plantarum MTD/1(RSMTD-1),and the other containing silage inoculated with high antioxidant activity L.plantarum 24-7(ES24-7).Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1.The ES24-7 diet elevated the total antioxidant capacity(T-AOC),superoxide dismutase(SOD),glutathione peroxi-dase(GSH-Px),and catalase(CAT)activities in milk,serum,and feces of lactating goats(with the exception of T-AOC in milk).Additionally,the diet containing ES24-7 inoculated silage enhanced casein yield,milk free fatty acid(FFA)content,and vitamin A level in the goats’milk.Furthermore,an increase of immunoglobulin(Ig)A,IgG,IgM,inter-leukin(IL)-4,and IL-10 concentrations were observed,coupled with a reduction in IL-1β,IL-2,IL-6,interferon(IFN)-γ,and tumor necrosis factor(TNF)-αconcentrations in the serum of lactating goats fed ES24-7.Higher concentrations of total volatile fatty acid(VFA),acetate,and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage.Moreover,the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2(NFE2L2),beta-carotene oxygenase 1(BCO1),SOD1,SOD2,SOD3,GPX2,CAT,glu-tathione-disulfide reductase(GSR),and heme oxygenase 1(HMOX1)genes in the mammary gland,while decreased the levels of NADPH oxidase 4(NOX4),TNF,and interferon gamma(IFNG).Conclusions These findings indicated that feeding L.plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.
基金supported by National Science Foundation of China(61971078)Chongqing Municipal Education Commission Science and Technology Major Project(KJZDM202301901).
文摘The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands significant human,time,and financial resources.Although active learning methods have mitigated the dependency on extensive labeled data,a cold-start problem persists in small to medium-sized expression recognition datasets.This issue arises because the initial labeled data often fails to represent the full spectrum of facial expression characteristics.This paper introduces an active learning approach that integrates uncertainty estimation,aiming to improve the precision of facial expression recognition regardless of dataset scale variations.The method is divided into two primary phases.First,the model undergoes self-supervised pre-training using contrastive learning and uncertainty estimation to bolster its feature extraction capabilities.Second,the model is fine-tuned using the prior knowledge obtained from the pre-training phase to significantly improve recognition accuracy.In the pretraining phase,the model employs contrastive learning to extract fundamental feature representations from the complete unlabeled dataset.These features are then weighted through a self-attention mechanism with rank regularization.Subsequently,data from the low-weighted set is relabeled to further refine the model’s feature extraction ability.The pre-trained model is then utilized in active learning to select and label information-rich samples more efficiently.Experimental results demonstrate that the proposed method significantly outperforms existing approaches,achieving an improvement in recognition accuracy of 5.09%and 3.82%over the best existing active learning methods,Margin,and Least Confidence methods,respectively,and a 1.61%improvement compared to the conventional segmented active learning method.
基金supported by National Natural Science Foundation of China(32060466)Chinese Academy of Agricultural Sciences。
文摘Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein PsbX has been identified in PSII,which is associated with the oxygen-evolving complex.The expression of PsbX gene protein is regulated by light.PsbX’s central role involves the regulation of PSII,facilitating the binding of quinone molecules to the Qb(PsbA)site,and it additionally plays a crucial role in optimizing the efficiency of photosynthesis.Despite these insights,a comprehensive understanding of the PsbX gene’s functions has remained elusive.Results In this study,we identified ten PsbX genes in Gossypium hirsutum L.The phylogenetic analysis results showed that 40 genes from nine species were classified into one clade.The resulting sequence logos exhibited substantial conservation across the N and C terminals at multiple sites among all Gossypium species.Furthermore,the ortholo-gous/paralogous,Ka/Ks ratio revealed that cotton PsbX genes subjected to positive as well as purifying selection pressure might lead to limited divergence,which resulted in the whole genome and segmental duplication.The expression patterns of GhPsbX genes exhibited variations across specific tissues,as indicated by the analysis.Moreover,the expression of GhPsbX genes could potentially be regulated in response to salt,intense light,and drought stresses.Therefore,GhPsbX genes may play a significant role in the modulation of photosynthesis under adverse abiotic conditions.Conclusion We examined the structure and function of PsbX gene family very first by using comparative genom-ics and systems biology approaches in cotton.It seems that PsbX gene family plays a vital role during the growth and development of cotton under stress conditions.Collectively,the results of this study provide basic information to unveil the molecular and physiological function of PsbX genes of cotton plants.
文摘E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that mediates the ubiquitination of BOS1 (Botrytis susceptible1), a transcription factor involved in stress and pathogen responses. Although BOI is an E3 ligase, there are reports to show that BOI interacts with target proteins such as DELLAs or CONSTANS to repress gibberellin responses and flowering without the degradation of the target proteins. In this article, we utilize diversified methods to comprehensively analyze the expression pattern, interaction network and function of BOI gene. Firstly, 1800 bp upstream region of BOI gene from Arabidopsis thaliana (Arabidopsis) genome was isolated, and fused GUS reporter gene. The resulting expression cassette was introduced into wild-type Arabidopsis through Agrobacterium-mediated transformation. The result demonstrated that BOI gene was expressed predominantly in leaves, siliques, young roots, and flowering tissues, indicating that BOI gene may be involved in multiple processes in plant growth and development in Arabidopsis. Besides, eight candidate interacting proteins were obtained from the Arabidopsis cDNA library via yeast two-hybrid technology, including EXO70E2 (AT5G61010), WRKY7 (AT4G24240), WRKY11 (AT4G31550), WRKY17 (AT2G24570), UBP20 (AT4G17895), L5 (AT1G12290), SAUR9 (AT4G36110) and TCP21 (AT5G08330). Functional analysis of these candidate interacting proteins manifested that they related to multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. In addition, the results of the transient assay proclaimed that BOI protein affects the protein stability of EXO70E2 and L5 through its E3 ubiquitin ligase activity. Our results provide novel clues for a better understanding of molecular mechanisms underlying BOI-mediated regulations.
基金the following funds:The Key Scientific Research Project of Anhui Provincial Research Preparation Plan in 2023(Nos.2023AH051806,2023AH052097,2023AH052103)Anhui Province Quality Engineering Project(Nos.2022sx099,2022cxtd097)+1 种基金University-Level Teaching and Research Key Projects(Nos.ch21jxyj01,XLZ-202208,XLZ-202106)Special Support Plan for Innovation and Entrepreneurship Leaders in Anhui Province。
文摘Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, CapsNet overcomesthese limitations by vectorizing information through increased directionality and magnitude, ensuring that spatialinformation is not overlooked. Therefore, this study proposes a novel expression recognition technique calledCAPSULE-VGG, which combines the strengths of CapsNet and convolutional neural networks. By refining andintegrating features extracted by a convolutional neural network before introducing theminto CapsNet, ourmodelenhances facial recognition capabilities. Compared to traditional neural network models, our approach offersfaster training pace, improved convergence speed, and higher accuracy rates approaching stability. Experimentalresults demonstrate that our method achieves recognition rates of 74.14% for the FER2013 expression dataset and99.85% for the CK+ expression dataset. By contrasting these findings with those obtained using conventionalexpression recognition techniques and incorporating CapsNet’s advantages, we effectively address issues associatedwith convolutional neural networks while increasing expression identification accuracy.
基金supported by the Fujian Province Seed Industry Innovation and Industrialization Project“Innovation and Industrialization Development of Precious Tree Seed Industries(Phoebe bornei)”(ZYCX-LY-202102)the Sub-project of National Key R&D Program“Phoebe bornei Efficient Cultivation Technology”(2016YFD0600603-2).
文摘Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.
基金financed by the Anhui Provincial Central Leading Local Science and Technology Development Special Fund Project(202007d06020021)Project of Suzhou Science and Technology Bureau(2021143).
文摘Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance.
文摘Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based models for classifying cancer types using machine learning techniques. By applying Log2 normalization to gene expression data and conducting Wilcoxon rank sum tests, the researchers employed various classifiers and Incremental Feature Selection (IFS) strategies. The study culminated in two optimized models using the XGBoost classifier, comprising 10 and 74 genes respectively. The 10-gene model, due to its simplicity, is proposed for easier clinical implementation, whereas the 74-gene model exhibited superior performance in terms of Specificity, AUC (Area Under the Curve), and Precision. These models were evaluated based on their sensitivity, AUC, and specificity, aiming to achieve high sensitivity and AUC while maintaining reasonable specificity.
基金funded by the Special Project for Science and Technology Innovation Platform of Fujian Academy of Agricultural Sciences,China(CXPT2023003)the Freely Explore Scientific and Technology Innovation Program of Fujian Academy of Agricultural Sciences(ZYTS202207)the Program for Innovative Research Team of Fujian Academy of Agricultural Sciences,China(CXTD2021006-3)。
文摘The cytokinin oxidase/dehydrogenase(CKX)enzyme is essential for controlling thefluctuating levels of endogen-ous cytokinin(CK)and has a significant impact on different aspects of plant growth and development.Nonethe-less,there is limited knowledge about CKX genes in tomato(Solanum lycopersicum L.).Here we performed genome-wide identification and analysis of nine SlCKX family members in tomatoes using bioinformatics tools.The results revealed that nine SlCKX genes were unevenly distributed onfive chromosomes(Chr.1,Chr.4,Chr.8,Chr.10,and Chr.12).The amino acid length,isoelectric points,and molecular weight of the nine SlCKX proteins ranged from 453 to 553,5.77 to 8.59,and 51.661 to 62.494 kD,respectively.Subcellular localization analysis indi-cated that SlCKX2 proteins were located in both the vacuole and cytoplasmic matrix;SlCKX3 and SlCKX5 pro-teins were located in the vacuole;and SlCKX1,4,6,7,8,and 9 proteins were located in the cytoplasmic matrix.Furthermore,we observed differences in the gene structures and phylogenetic relationships of SlCKX proteins among different members.SlCKX1-9 were positioned on two out of the three branches of the CKX phylogenetic tree in the multispecies phylogenetic tree construction,revealing their strong conservation within phylogenetic subgroups.Unique patterns of expression of CKX genes were noticed in callus cultures exposed to varying con-centrations of exogenous ZT,suggesting their roles in specific developmental and physiological functions in the regeneration system.These results may facilitate subsequent functional analysis of SlCKX genes and provide valu-able insights for establishing an efficient regeneration system for tomatoes.