Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable dev...Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable development.The hydrocracking behaviors of typical aromatics in LCO of naphthalene and tetralin were investigated over NiMo and CoMo catalysts.Several characterization methods including N2-adsoprtion and desorption,ammonia temperature-programmed desorption(NH3-TPD),Pyridine infrared spectroscopy(Py-IR),CO infrared spectroscopy(CO-IR),Raman and X-ray photoelectron spectroscopy(XPS) were applied to determine the properties of different catalysts.The results showed that CoMo catalyst with high concentration of S-edges could hydrosaturate more naphthalene to tetralin but exhibit lower yield of high-value light aromatics(carbon numbers less than 10) than NiMo catalyst.NiMo catalyst with high concentration of Mo-edges also presented a higher selectivity of converting naphthalene into cyclanes than CoMo catalyst.Subsequently,the naphthalene and LCO hydrocracking performances were also investigated over different catalysts systems.The activity evaluation and kinetic analysis results showed that the naphthalene hydrocracking conversion and the yield of light aromatics for CoMo-AY/NiMo-AY grading catalysts were higher than NiMo-AY/CoMo-AY grading catalysts at same condition.A stepwise reaction principle was proposed to explain the high efficiency of CoMo-AY/NiMoAY grading catalysts.Finally,the LCO hydrocracking evaluation results confirmed that CoMo-AY/NiMoAY catalysts grading system with low carbon deposition and high stability could remain high percentage of active phases,which was more efficient to convert LCO to high-octane gasoline.展开更多
To investigate the characteristics of the condensation in gasoline vapor condensation recovery,the condensation process of gasoline vapor with turbulent flow in a vertical tube is simulated based on the gas-liquid two...To investigate the characteristics of the condensation in gasoline vapor condensation recovery,the condensation process of gasoline vapor with turbulent flow in a vertical tube is simulated based on the gas-liquid two-phase flow model.An effective diffusion coefficient is used to describe mass diffusion among the species of gasoline vapor.Several variables including temperature,pressure,liquid film thickness and the variation of the Nusselt number in the tube are simulated.The effects of the inlet-to-wall temperature difference and the Reynolds number on the condensation rate and the Nusselt number are obtained by modelling.The results show that heat transfer and condensation can be enhanced significantly by increasing the inlet Reynolds number.However,the increase in the inlet-to-wall temperature difference has little effect on the condensation rate.It is also found that the gasoline vapor condensation rate is influenced greatly by the mass transfer resistance.The comparison of results from the model with previous experiments shows a good agreement.展开更多
A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge ...A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge engines. The model consists of two exponential functions for calculating the fuel burning rate in different charge zones. The model factors are determined by a non-linear curve fitting technique, based on the experimental data obtained from 30 cases in middle and low loads. The results show good agreement between the measured and calculated cylinder pressures, and the deviation between calculated and measured cylinder pressures is less than 5%. The zerodimensional single-zone double-curve model is successful in the combustion modeling for stratified charge engines.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 21878330, 21676298)the National Science and Technology Major Project, the CNPC Key Research Project (2016E-0707)the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award (No. OSR-2019-CPF-4103.2)。
文摘Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable development.The hydrocracking behaviors of typical aromatics in LCO of naphthalene and tetralin were investigated over NiMo and CoMo catalysts.Several characterization methods including N2-adsoprtion and desorption,ammonia temperature-programmed desorption(NH3-TPD),Pyridine infrared spectroscopy(Py-IR),CO infrared spectroscopy(CO-IR),Raman and X-ray photoelectron spectroscopy(XPS) were applied to determine the properties of different catalysts.The results showed that CoMo catalyst with high concentration of S-edges could hydrosaturate more naphthalene to tetralin but exhibit lower yield of high-value light aromatics(carbon numbers less than 10) than NiMo catalyst.NiMo catalyst with high concentration of Mo-edges also presented a higher selectivity of converting naphthalene into cyclanes than CoMo catalyst.Subsequently,the naphthalene and LCO hydrocracking performances were also investigated over different catalysts systems.The activity evaluation and kinetic analysis results showed that the naphthalene hydrocracking conversion and the yield of light aromatics for CoMo-AY/NiMo-AY grading catalysts were higher than NiMo-AY/CoMo-AY grading catalysts at same condition.A stepwise reaction principle was proposed to explain the high efficiency of CoMo-AY/NiMoAY grading catalysts.Finally,the LCO hydrocracking evaluation results confirmed that CoMo-AY/NiMoAY catalysts grading system with low carbon deposition and high stability could remain high percentage of active phases,which was more efficient to convert LCO to high-octane gasoline.
文摘To investigate the characteristics of the condensation in gasoline vapor condensation recovery,the condensation process of gasoline vapor with turbulent flow in a vertical tube is simulated based on the gas-liquid two-phase flow model.An effective diffusion coefficient is used to describe mass diffusion among the species of gasoline vapor.Several variables including temperature,pressure,liquid film thickness and the variation of the Nusselt number in the tube are simulated.The effects of the inlet-to-wall temperature difference and the Reynolds number on the condensation rate and the Nusselt number are obtained by modelling.The results show that heat transfer and condensation can be enhanced significantly by increasing the inlet Reynolds number.However,the increase in the inlet-to-wall temperature difference has little effect on the condensation rate.It is also found that the gasoline vapor condensation rate is influenced greatly by the mass transfer resistance.The comparison of results from the model with previous experiments shows a good agreement.
基金Supported by National Natural Science Foundation of China ( No. 50576064)Youth Foundation of Tianjin University (No. W50201).
文摘A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge engines. The model consists of two exponential functions for calculating the fuel burning rate in different charge zones. The model factors are determined by a non-linear curve fitting technique, based on the experimental data obtained from 30 cases in middle and low loads. The results show good agreement between the measured and calculated cylinder pressures, and the deviation between calculated and measured cylinder pressures is less than 5%. The zerodimensional single-zone double-curve model is successful in the combustion modeling for stratified charge engines.