This paper mainly studies the data characteristics of high order cumulants using digitally modulated signals, and constructs the identification feature parameters that can distinguish the signal modulation type by the...This paper mainly studies the data characteristics of high order cumulants using digitally modulated signals, and constructs the identification feature parameters that can distinguish the signal modulation type by the high-order cumulants data of the digital modulation signal. Set the identification signal modulation type determination threshold based on the value of the identification feature parameter. The identification feature parameter value of the signal modulation type is compared with the set determination threshold, to realize the recognition of digital modulation signal. This identification method is implemented based on MATLAB design, with a 2ASK (2-ary Amplitude Shift Keying) signal, 4ASK (4-ary Amplitude Shift Keying) signal, 2PSK (2-ary Phase Shift Keying) signal, 4PSK (4-ary Phase Shift Keying) signal, 2FSK (2-ary Frequency Shift Keying) signal, 4FSK (4-ary Frequency Shift Keying) signal. The second, fourth and sixth order cumulants of the six signals were analyzed. Calculate the selected identification feature parameter value and the determination threshold to identify the six signals. The six signals have made MATLAB identification simulation. Simulation results show that this method is feasible and has high recognition rate. Simulation results verify that such recognition methods maintain a high recognition rate under conditions with low signal-to-noise ratio. This identification method can be extended to more MASK (M-ary Amplitude Shift Keying), MPSK (M-ary Phase Shift Keying), MFSK (M-ary Frequency Shift Keying), MQAM (M-ary Quadrature Amplitude Modulation) signal identification.展开更多
In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as c...In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against rest of multi-class classifier is designed, and method of parameter selection using cross- validation grid is adopted. Through the experiments it can be concluded that the classifier based on SVM has high performance and is more robust.展开更多
This paper gives a MUSIC signal DOA estimation algorithm based on the modified high-order cumulant matrix which is constructed by the recieved data and their conjugate rearrangements. When the snapshot number is limit...This paper gives a MUSIC signal DOA estimation algorithm based on the modified high-order cumulant matrix which is constructed by the recieved data and their conjugate rearrangements. When the snapshot number is limited, this algorithm can improve the signal DOA estimation performances obviously, and its computational complexity scarcely increases. Finally, some simulation results to verify the theoretical analyses are presented.展开更多
Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be ma...Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm.展开更多
In accordance with the detecting process of multi-frequency signals between the offices in telephone networks, and in contrast with the autocorrelation method used to handle the multi-frequency signals, a fast, inexpe...In accordance with the detecting process of multi-frequency signals between the offices in telephone networks, and in contrast with the autocorrelation method used to handle the multi-frequency signals, a fast, inexpensive and unbiased of cumulants estimation method is adopted in detecting signals. This detecting method is better for resisting noise performance and more practical than the autocorrelation method.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position...We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.展开更多
The non-Gaussianity of quantum states incarnates an important resource for improving the performance of continuous-variable quantum information protocols.We propose a novel criterion of non-Gaussianity for single-mode...The non-Gaussianity of quantum states incarnates an important resource for improving the performance of continuous-variable quantum information protocols.We propose a novel criterion of non-Gaussianity for single-mode rotationally symmetric quantum states via the squared Frobenius norm of higher-order cumulant matrix for the quadrature distribution function.As an application,we study the non-Gaussianities of three classes of single-mode symmetric non-Gaussian states:a mixture of vacuum and Fock states,single-photon added thermal states,and even/odd Schr¨odinger cat states.It is shown that such a criterion is faithful and effective for revealing non-Gaussianity.We further extend this criterion to two cases of symmetric multi-mode non-Gaussian states and non-symmetric single-mode non-Gaussian states.展开更多
High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(...High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ...In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.展开更多
High-order Laguerre–Gaussian(LG)petal-like beams have become a topic of significant interest due to their potential application in next-generation optical trapping,quantum optics,and materials processing technologies...High-order Laguerre–Gaussian(LG)petal-like beams have become a topic of significant interest due to their potential application in next-generation optical trapping,quantum optics,and materials processing technologies.In this work,we demonstrate the generation of high-order LG beams with petal-like spatial profiles and tunable orbital angular momentum(OAM)in the mid-infrared wavelength region.These beams are generated using idler-resonant optical parametric oscillation(OPO)in a KTiOAsO_(4)(KTA)crystal.By adjusting the length of the resonant cavity,the OAM of the mid-infrared idler field can be tuned and we demonstrate tuning in the range of 0 to10.When using a maximum pump energy of 20.2 mJ,the maximum output energy of high-order modes LG_(0.45),LG_(0.48),and LG_(0.410) were 0.8,0.53,and 0.46 mJ,respectively.The means by which high-order LG modes with petal-like spatial profiles and tunable OAM were generated from the OPO is theoretically modeled by examining the spatial overlap efficiency of the beam waists of the pump and resonant idler fields within the center of the KTA crystal.The methodology presented in this work offers a simple and flexible method to wavelength-convert laser emission and generate high-order LG modes.展开更多
The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ...The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.展开更多
In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered gri...In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.展开更多
A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-G...A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-Gaussian signals. The proposed approach, which is suitable for applications in arbitrary Gaussian noise environments, gives a closed-form representation of the estimated parameters, without spectral peak searching. An efficient method is also provided for elimination of cyclic phase ambiguities. Simulations are presented to show the performance of the algorithm.展开更多
A new feature based on higher order statistics is proposed for classification of MPSKsignals, which is invariant with respect to translation (shift), scale and rotation transforms of MPSK signal constellations, and ca...A new feature based on higher order statistics is proposed for classification of MPSKsignals, which is invariant with respect to translation (shift), scale and rotation transforms of MPSK signal constellations, and can suppress additive color or white Gaussian noise. Application of the new feature to classification of MPSK signals, at medium signal-to-noise ratio with specified sample size, results in high probability of correct identification. Finally, computer simulations and comparisons with existing algorithms are given.展开更多
文摘This paper mainly studies the data characteristics of high order cumulants using digitally modulated signals, and constructs the identification feature parameters that can distinguish the signal modulation type by the high-order cumulants data of the digital modulation signal. Set the identification signal modulation type determination threshold based on the value of the identification feature parameter. The identification feature parameter value of the signal modulation type is compared with the set determination threshold, to realize the recognition of digital modulation signal. This identification method is implemented based on MATLAB design, with a 2ASK (2-ary Amplitude Shift Keying) signal, 4ASK (4-ary Amplitude Shift Keying) signal, 2PSK (2-ary Phase Shift Keying) signal, 4PSK (4-ary Phase Shift Keying) signal, 2FSK (2-ary Frequency Shift Keying) signal, 4FSK (4-ary Frequency Shift Keying) signal. The second, fourth and sixth order cumulants of the six signals were analyzed. Calculate the selected identification feature parameter value and the determination threshold to identify the six signals. The six signals have made MATLAB identification simulation. Simulation results show that this method is feasible and has high recognition rate. Simulation results verify that such recognition methods maintain a high recognition rate under conditions with low signal-to-noise ratio. This identification method can be extended to more MASK (M-ary Amplitude Shift Keying), MPSK (M-ary Phase Shift Keying), MFSK (M-ary Frequency Shift Keying), MQAM (M-ary Quadrature Amplitude Modulation) signal identification.
文摘In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against rest of multi-class classifier is designed, and method of parameter selection using cross- validation grid is adopted. Through the experiments it can be concluded that the classifier based on SVM has high performance and is more robust.
文摘This paper gives a MUSIC signal DOA estimation algorithm based on the modified high-order cumulant matrix which is constructed by the recieved data and their conjugate rearrangements. When the snapshot number is limited, this algorithm can improve the signal DOA estimation performances obviously, and its computational complexity scarcely increases. Finally, some simulation results to verify the theoretical analyses are presented.
基金Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA28040000,XDA28120000Natural Science Foundation of Shandong Province,Grant No.ZR2021MF094+2 种基金Key R&D Plan of Shandong Province,Grant No.2020CXGC010804Central Leading Local Science and Technology Development Special Fund Project,Grant No.YDZX2021122Science&Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta,Grant No.2022SZX11。
文摘Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm.
文摘In accordance with the detecting process of multi-frequency signals between the offices in telephone networks, and in contrast with the autocorrelation method used to handle the multi-frequency signals, a fast, inexpensive and unbiased of cumulants estimation method is adopted in detecting signals. This detecting method is better for resisting noise performance and more practical than the autocorrelation method.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
基金This project was supported by the National Key Research and Development Program of China(Grant Nos.2022YFE134200 and 2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.11604119,12104177,11904192,12074145,and 11704147)the Fundamental Research Funds for the Central Universities(Grant Nos.GK202207012 and QCYRCXM-2022-241).
文摘We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.
基金Project supported by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ30535)。
文摘The non-Gaussianity of quantum states incarnates an important resource for improving the performance of continuous-variable quantum information protocols.We propose a novel criterion of non-Gaussianity for single-mode rotationally symmetric quantum states via the squared Frobenius norm of higher-order cumulant matrix for the quadrature distribution function.As an application,we study the non-Gaussianities of three classes of single-mode symmetric non-Gaussian states:a mixture of vacuum and Fock states,single-photon added thermal states,and even/odd Schr¨odinger cat states.It is shown that such a criterion is faithful and effective for revealing non-Gaussianity.We further extend this criterion to two cases of symmetric multi-mode non-Gaussian states and non-symmetric single-mode non-Gaussian states.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92250306,11974137,and 12304302)the National Key Program for Science and Technology Research and Development of China(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of the Education Department of Jilin Province,China(Grant No.JJKH20230283KJ)。
文摘High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
文摘In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.
基金supported by the National Natural Science Foundation of China(Grant Nos.12264049 and 11664041)the Xinjiang Normal University Young Outstanding Talent Programme(Grant No.XJNUQB2022-17).
文摘High-order Laguerre–Gaussian(LG)petal-like beams have become a topic of significant interest due to their potential application in next-generation optical trapping,quantum optics,and materials processing technologies.In this work,we demonstrate the generation of high-order LG beams with petal-like spatial profiles and tunable orbital angular momentum(OAM)in the mid-infrared wavelength region.These beams are generated using idler-resonant optical parametric oscillation(OPO)in a KTiOAsO_(4)(KTA)crystal.By adjusting the length of the resonant cavity,the OAM of the mid-infrared idler field can be tuned and we demonstrate tuning in the range of 0 to10.When using a maximum pump energy of 20.2 mJ,the maximum output energy of high-order modes LG_(0.45),LG_(0.48),and LG_(0.410) were 0.8,0.53,and 0.46 mJ,respectively.The means by which high-order LG modes with petal-like spatial profiles and tunable OAM were generated from the OPO is theoretically modeled by examining the spatial overlap efficiency of the beam waists of the pump and resonant idler fields within the center of the KTA crystal.The methodology presented in this work offers a simple and flexible method to wavelength-convert laser emission and generate high-order LG modes.
文摘The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No. 41074100)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No. NCET-10-0812)
文摘In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.
基金This project was supported by the Graduate Innovation Laboratory of Jilin University(502039)Jilin Science Committee of China(20030519)+1 种基金the National Natural Science Foundation of China (69872012)the Foundation of Nanjing Institute of Technology.
文摘A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-Gaussian signals. The proposed approach, which is suitable for applications in arbitrary Gaussian noise environments, gives a closed-form representation of the estimated parameters, without spectral peak searching. An efficient method is also provided for elimination of cyclic phase ambiguities. Simulations are presented to show the performance of the algorithm.
文摘A new feature based on higher order statistics is proposed for classification of MPSKsignals, which is invariant with respect to translation (shift), scale and rotation transforms of MPSK signal constellations, and can suppress additive color or white Gaussian noise. Application of the new feature to classification of MPSK signals, at medium signal-to-noise ratio with specified sample size, results in high probability of correct identification. Finally, computer simulations and comparisons with existing algorithms are given.