The Z–S–C multiphase lattice Boltzmann model [Zheng, Shu, and Chew(ZSC), J. Comput. Phys. 218, 353(2006)]is favored due to its good stability, high efficiency, and large density ratio. However, in terms of mass cons...The Z–S–C multiphase lattice Boltzmann model [Zheng, Shu, and Chew(ZSC), J. Comput. Phys. 218, 353(2006)]is favored due to its good stability, high efficiency, and large density ratio. However, in terms of mass conservation, this model is not satisfactory during the simulation computations. In this paper, a mass correction is introduced into the ZSC model to make up the mass leakage, while a high-order difference is used to calculate the gradient of the order parameter to improve the accuracy. To verify the improved model, several three-dimensional multiphase flow simulations are carried out,including a bubble in a stationary flow, the merging of two bubbles, and the bubble rising under buoyancy. The numerical simulations show that the results from the present model are in good agreement with those from previous experiments and simulations. The present model not only retains the good properties of the original ZSC model, but also achieves the mass conservation and higher accuracy.展开更多
In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical ...In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme.展开更多
In this paper,we propose a new conservative high-order semi-Lagrangian finite difference(SLFD)method to solve linear advection equation and the nonlinear Vlasov and BGK models.The finite difference scheme has better c...In this paper,we propose a new conservative high-order semi-Lagrangian finite difference(SLFD)method to solve linear advection equation and the nonlinear Vlasov and BGK models.The finite difference scheme has better computational flexibility by working with point values,especially when working with high-dimensional problems in an operator splitting setting.The reconstruction procedure in the proposed SLFD scheme is motivated from the SL finite volume scheme.In particular,we define a new sliding average function,whose cell averages agree with point values of the underlying function.By developing the SL finite volume scheme for the sliding average function,we derive the proposed SLFD scheme,which is high-order accurate,mass conservative and unconditionally stable for linear problems.The performance of the scheme is showcased by linear transport applications,as well as the nonlinear Vlasov-Poisson and BGK models.Furthermore,we apply the Fourier stability analysis to a fully discrete SLFD scheme coupled with diagonally implicit Runge-Kutta(DIRK)method when applied to a stiff two-velocity hyperbolic relaxation system.Numerical stability and asymptotic accuracy properties of DIRK methods are discussed in theoretical and computational aspects.展开更多
In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(...In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.展开更多
BACKGROUND Cardiovascular disease(CVD)is a leading cause of morbidity and mortality worldwide,the global burden of which is rising.It is still unclear the extent to which prediabetes contributes to the risk of CVD in ...BACKGROUND Cardiovascular disease(CVD)is a leading cause of morbidity and mortality worldwide,the global burden of which is rising.It is still unclear the extent to which prediabetes contributes to the risk of CVD in various age brackets among adults.To develop a focused screening plan and treatment for Chinese adults with prediabetes,it is crucial to identify variations in the connection between prediabetes and the risk of CVD based on age.AIM To examine the clinical features of prediabetes and identify risk factors for CVD in different age groups in China.METHODS The cross-sectional study involved a total of 46239 participants from June 2007 through May 2008.A thorough evaluation was conducted.Individuals with prediabetes were categorized into two groups based on age.Chinese atherosclerotic CVD risk prediction model was employed to evaluate the risk of developing CVD over 10 years.Random forest was established in both age groups.SHapley Additive exPlanation method prioritized the importance of features from the perspective of assessment contribution.RESULTS In total,6948 people were diagnosed with prediabetes in this study.In prediabetes,prevalences of CVD were 5(0.29%)in the younger group and 148(2.85%)in the older group.Overall,11.11%of the younger group and 29.59% of the older group were intermediate/high-risk of CVD for prediabetes without CVD based on the Prediction for ASCVD Risk in China equation in ten years.In the younger age group,the 10-year risk of CVD was found to be more closely linked to family history of CVD rather than lifestyle,whereas in the older age group,resident status was more closely linked.CONCLUSION The susceptibility to CVD is age-specific in newly diagnosed prediabetes.It is necessary to develop targeted approaches for the prevention and management of CVD in adults across various age brackets.展开更多
Construction of high-order difference schemes based on Taylor series expansion has long been a hot topic in computational mathematics, while its application in comprehensive weather models is still very rare. Here, th...Construction of high-order difference schemes based on Taylor series expansion has long been a hot topic in computational mathematics, while its application in comprehensive weather models is still very rare. Here, the properties of high-order finite difference schemes are studied based on idealized numerical testing, for the purpose of their application in the Global/Regional Assimilation and Prediction System(GRAPES) model. It is found that the pros and cons due to grid staggering choices diminish with higher-order schemes based on linearized analysis of the one-dimensional gravity wave equation. The improvement of higher-order difference schemes is still obvious for the mesh with smooth varied grid distance. The results of discontinuous square wave testing also exhibits the superiority of high-order schemes. For a model grid with severe non-uniformity and non-orthogonality, the advantage of high-order difference schemes is inapparent, as shown by the results of two-dimensional idealized advection tests under a terrain-following coordinate. In addition, the increase in computational expense caused by high-order schemes can be avoided by the precondition technique used in the GRAPES model. In general, a high-order finite difference scheme is a preferable choice for the tropical regional GRAPES model with a quasi-uniform and quasi-orthogonal grid mesh.展开更多
We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position...We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.展开更多
High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(...High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
Data-derived normal mode extraction is an effective method for extracting normal mode depth functions in the absence of marine environmental data.However,when the corresponding singular vectors become nonunique when t...Data-derived normal mode extraction is an effective method for extracting normal mode depth functions in the absence of marine environmental data.However,when the corresponding singular vectors become nonunique when two or more singular values obtained from the cross-spectral density matrix diagonalization are nearly equal,this results in unsatisfactory extraction outcomes for the normal mode depth functions.To address this issue,we introduced in this paper a range-difference singular value decomposition method for the extraction of normal mode depth functions.We performed the mode extraction by conducting singular value decomposition on the individual frequency components of the signal's cross-spectral density matrix.This was achieved by using pressure and its range-difference matrices constructed from vertical line array data.The proposed method was validated using simulated data.In addition,modes were successfully extracted from ambient noise.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to bal...An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to balance the platform gravity.The two-way blower inflates and deflates the ballonet to regulate the buoyancy.Altitude adjustment is achieved by tracking the differential pressure difference(DPD),and a threshold switching strategy is used to achieve blower flow control.The vertical acceleration regulation ability is decided not only by the blower flow rate,but also by the designed margin of pressure difference(MPD).Pressure difference is a slow-varying variable compared with altitude,and it is adopted as the control variable.The response speed of the actuator to disturbance can be delayed,and the overshoot caused by the large inertia of the platform is inhibited.This method can maintain a high tracking accuracy and reduce the complexity of model calculation,thus improving the robustness of controller design.展开更多
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t...Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.展开更多
Policy evaluation(PE)is a critical sub-problem in reinforcement learning,which estimates the value function for a given policy and can be used for policy improvement.However,there still exist some limitations in curre...Policy evaluation(PE)is a critical sub-problem in reinforcement learning,which estimates the value function for a given policy and can be used for policy improvement.However,there still exist some limitations in current PE methods,such as low sample efficiency and local convergence,especially on complex tasks.In this study,a novel PE algorithm called Least-Squares Truncated Temporal-Difference learning(LST2D)is proposed.In LST2D,an adaptive truncation mechanism is designed,which effectively takes advantage of the fast convergence property of Least-Squares Temporal Difference learning and the asymptotic convergence property of Temporal Difference learning(TD).Then,two feature pre-training methods are utilised to improve the approximation ability of LST2D.Furthermore,an Actor-Critic algorithm based on LST2D and pre-trained feature representations(ACLPF)is proposed,where LST2D is integrated into the critic network to improve learning-prediction efficiency.Comprehensive simulation studies were conducted on four robotic tasks,and the corresponding results illustrate the effectiveness of LST2D.The proposed ACLPF algorithm outperformed DQN,ACER and PPO in terms of sample efficiency and stability,which demonstrated that LST2D can be applied to online learning control problems by incorporating it into the actor-critic architecture.展开更多
BACKGROUND Laparoscopic rectal cancer radical surgery is a complex procedure affected by various factors.However,the existing literature lacks standardized parameters for the pelvic region and soft tissues,which hampe...BACKGROUND Laparoscopic rectal cancer radical surgery is a complex procedure affected by various factors.However,the existing literature lacks standardized parameters for the pelvic region and soft tissues,which hampers the establishment of consistent conclusions.AIM To comprehensively assess 16 pelvic and 7 soft tissue parameters through computerized tomography(CT)-based three-dimensional(3D)reconstruction,providing a strong theoretical basis to address challenges in laparoscopic rectal cancer radical surgery.METHODS We analyzed data from 218 patients who underwent radical laparoscopic surgery for rectal cancer,and utilized CT data for 3D pelvic reconstruction.Specific anatomical points were carefully marked and measured using advanced 3D modeling software.To analyze the pelvic and soft tissue parameters,we emp-loyed statistical methods including paired sample t-tests,Wilcoxon rank-sum tests,and correlation analysis.RESULTS The investigation highlighted significant sex disparities in 14 pelvic bone parameters and 3 soft tissue parameters.Males demonstrated larger measurements in pelvic depth and overall curvature,smaller measurements in pelvic width,a larger mesorectal fat area,and a larger anterior-posterior abdominal diameter.By contrast,females exhibited wider pelvises,shallower depth,smaller overall curvature,and an increased amount of subcutaneous fat tissue.However,there were no significant sex differences observed in certain parameters such as sacral curvature height,superior pubococcygeal diameter,rectal area,visceral fat area,waist circumference,and transverse abdominal diameter.CONCLUSION The reconstruction of 3D CT data enabled accurate pelvic measurements,revealing significant sex differences in both pelvic and soft tissue parameters.This study design offer potential in predicting surgical difficulties and creating personalized surgical plans for male rectal cancer patients with a potentially“difficult pelvis”,ultimately improving surgical outcomes.Further research and utilization of these parameters could lead to enhanced surgical methods and patient care in laparoscopic rectal cancer radical surgery.展开更多
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
Women represent the majority of patients with psychiatric diagnoses and also the largest users of psychotropic drugs.There are inevitable differences in efficacy,side effects and long-term treatment response between m...Women represent the majority of patients with psychiatric diagnoses and also the largest users of psychotropic drugs.There are inevitable differences in efficacy,side effects and long-term treatment response between men and women.Psychopharmacological research needs to develop adequately powered animal and human trials aimed to consider pharmacokinetics and pharmacodynamics of central nervous system drugs in both male and female subjects.Healthcare professionals have the responsibility to prescribe sex-specific psychopharmacotherapies with a priority to differentiate between men and women in order to minimize adverse drugs reactions,to maximize therapeutic effectiveness and to provide personalized management of care.展开更多
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t...Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11862003 and 81860635)the Key Project of the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2017GXNSFDA198038)+3 种基金the Project of Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2018GXNSFAA281302)the Project for Promotion of Young and Middle-aged Teachers’Basic Scientific Research Ability in Guangxi Universities,China(Grant No.2019KY0084)the“Bagui Scholar”Teams for Innovation and Research Project of Guangxi Zhuang Autonomous Region,Chinathe Graduate Innovation Program of Guangxi Normal University,China(Grant No.JXYJSKT-2019-007)。
文摘The Z–S–C multiphase lattice Boltzmann model [Zheng, Shu, and Chew(ZSC), J. Comput. Phys. 218, 353(2006)]is favored due to its good stability, high efficiency, and large density ratio. However, in terms of mass conservation, this model is not satisfactory during the simulation computations. In this paper, a mass correction is introduced into the ZSC model to make up the mass leakage, while a high-order difference is used to calculate the gradient of the order parameter to improve the accuracy. To verify the improved model, several three-dimensional multiphase flow simulations are carried out,including a bubble in a stationary flow, the merging of two bubbles, and the bubble rising under buoyancy. The numerical simulations show that the results from the present model are in good agreement with those from previous experiments and simulations. The present model not only retains the good properties of the original ZSC model, but also achieves the mass conservation and higher accuracy.
基金the National Natural Science Foundation of China under Grant Number NSFC 11801302Tsinghua University Initiative Scientific Research Program.Yang Yang is supported by the NSF Grant DMS-1818467.
文摘In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme.
基金Research of Linjin Li and Jingmei Qiu is supported by the NSF grant NSF-DMS-1818924the Air Force Office of Scientific Computing FA9550-18-1-0257 and the University of Delawarethe Italian Ministry of Instruction,University and Research(MIUR)to support this research with funds coming from the PRIN Project 2017,No.2017KKJP4X and ITN-ETN Horizon 2020 Project,Project Reference 642768.
文摘In this paper,we propose a new conservative high-order semi-Lagrangian finite difference(SLFD)method to solve linear advection equation and the nonlinear Vlasov and BGK models.The finite difference scheme has better computational flexibility by working with point values,especially when working with high-dimensional problems in an operator splitting setting.The reconstruction procedure in the proposed SLFD scheme is motivated from the SL finite volume scheme.In particular,we define a new sliding average function,whose cell averages agree with point values of the underlying function.By developing the SL finite volume scheme for the sliding average function,we derive the proposed SLFD scheme,which is high-order accurate,mass conservative and unconditionally stable for linear problems.The performance of the scheme is showcased by linear transport applications,as well as the nonlinear Vlasov-Poisson and BGK models.Furthermore,we apply the Fourier stability analysis to a fully discrete SLFD scheme coupled with diagonally implicit Runge-Kutta(DIRK)method when applied to a stiff two-velocity hyperbolic relaxation system.Numerical stability and asymptotic accuracy properties of DIRK methods are discussed in theoretical and computational aspects.
文摘In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.
文摘BACKGROUND Cardiovascular disease(CVD)is a leading cause of morbidity and mortality worldwide,the global burden of which is rising.It is still unclear the extent to which prediabetes contributes to the risk of CVD in various age brackets among adults.To develop a focused screening plan and treatment for Chinese adults with prediabetes,it is crucial to identify variations in the connection between prediabetes and the risk of CVD based on age.AIM To examine the clinical features of prediabetes and identify risk factors for CVD in different age groups in China.METHODS The cross-sectional study involved a total of 46239 participants from June 2007 through May 2008.A thorough evaluation was conducted.Individuals with prediabetes were categorized into two groups based on age.Chinese atherosclerotic CVD risk prediction model was employed to evaluate the risk of developing CVD over 10 years.Random forest was established in both age groups.SHapley Additive exPlanation method prioritized the importance of features from the perspective of assessment contribution.RESULTS In total,6948 people were diagnosed with prediabetes in this study.In prediabetes,prevalences of CVD were 5(0.29%)in the younger group and 148(2.85%)in the older group.Overall,11.11%of the younger group and 29.59% of the older group were intermediate/high-risk of CVD for prediabetes without CVD based on the Prediction for ASCVD Risk in China equation in ten years.In the younger age group,the 10-year risk of CVD was found to be more closely linked to family history of CVD rather than lifestyle,whereas in the older age group,resident status was more closely linked.CONCLUSION The susceptibility to CVD is age-specific in newly diagnosed prediabetes.It is necessary to develop targeted approaches for the prevention and management of CVD in adults across various age brackets.
基金supported by the National Natural Science Foundation of China (Grant No. U1811464)。
文摘Construction of high-order difference schemes based on Taylor series expansion has long been a hot topic in computational mathematics, while its application in comprehensive weather models is still very rare. Here, the properties of high-order finite difference schemes are studied based on idealized numerical testing, for the purpose of their application in the Global/Regional Assimilation and Prediction System(GRAPES) model. It is found that the pros and cons due to grid staggering choices diminish with higher-order schemes based on linearized analysis of the one-dimensional gravity wave equation. The improvement of higher-order difference schemes is still obvious for the mesh with smooth varied grid distance. The results of discontinuous square wave testing also exhibits the superiority of high-order schemes. For a model grid with severe non-uniformity and non-orthogonality, the advantage of high-order difference schemes is inapparent, as shown by the results of two-dimensional idealized advection tests under a terrain-following coordinate. In addition, the increase in computational expense caused by high-order schemes can be avoided by the precondition technique used in the GRAPES model. In general, a high-order finite difference scheme is a preferable choice for the tropical regional GRAPES model with a quasi-uniform and quasi-orthogonal grid mesh.
基金This project was supported by the National Key Research and Development Program of China(Grant Nos.2022YFE134200 and 2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.11604119,12104177,11904192,12074145,and 11704147)the Fundamental Research Funds for the Central Universities(Grant Nos.GK202207012 and QCYRCXM-2022-241).
文摘We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92250306,11974137,and 12304302)the National Key Program for Science and Technology Research and Development of China(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of the Education Department of Jilin Province,China(Grant No.JJKH20230283KJ)。
文摘High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
基金supported in part by the Young Scientists Fund of National Natural Science Foundation of China (No.42206226)the National Key Research and Development Program of China (No.2021YFC3101603)。
文摘Data-derived normal mode extraction is an effective method for extracting normal mode depth functions in the absence of marine environmental data.However,when the corresponding singular vectors become nonunique when two or more singular values obtained from the cross-spectral density matrix diagonalization are nearly equal,this results in unsatisfactory extraction outcomes for the normal mode depth functions.To address this issue,we introduced in this paper a range-difference singular value decomposition method for the extraction of normal mode depth functions.We performed the mode extraction by conducting singular value decomposition on the individual frequency components of the signal's cross-spectral density matrix.This was achieved by using pressure and its range-difference matrices constructed from vertical line array data.The proposed method was validated using simulated data.In addition,modes were successfully extracted from ambient noise.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
基金the National Natural Science Foundation of China(No.52175103)。
文摘An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to balance the platform gravity.The two-way blower inflates and deflates the ballonet to regulate the buoyancy.Altitude adjustment is achieved by tracking the differential pressure difference(DPD),and a threshold switching strategy is used to achieve blower flow control.The vertical acceleration regulation ability is decided not only by the blower flow rate,but also by the designed margin of pressure difference(MPD).Pressure difference is a slow-varying variable compared with altitude,and it is adopted as the control variable.The response speed of the actuator to disturbance can be delayed,and the overshoot caused by the large inertia of the platform is inhibited.This method can maintain a high tracking accuracy and reduce the complexity of model calculation,thus improving the robustness of controller design.
基金supported by the National Key Research and Development Program of China(No.2018YFB2101300)the National Natural Science Foundation of China(Grant No.61871186)the Dean’s Fund of Engineering Research Center of Software/Hardware Co-Design Technology and Application,Ministry of Education(East China Normal University).
文摘Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.
基金Joint Funds of the National Natural Science Foundation of China,Grant/Award Number:U21A20518National Natural Science Foundation of China,Grant/Award Numbers:62106279,61903372。
文摘Policy evaluation(PE)is a critical sub-problem in reinforcement learning,which estimates the value function for a given policy and can be used for policy improvement.However,there still exist some limitations in current PE methods,such as low sample efficiency and local convergence,especially on complex tasks.In this study,a novel PE algorithm called Least-Squares Truncated Temporal-Difference learning(LST2D)is proposed.In LST2D,an adaptive truncation mechanism is designed,which effectively takes advantage of the fast convergence property of Least-Squares Temporal Difference learning and the asymptotic convergence property of Temporal Difference learning(TD).Then,two feature pre-training methods are utilised to improve the approximation ability of LST2D.Furthermore,an Actor-Critic algorithm based on LST2D and pre-trained feature representations(ACLPF)is proposed,where LST2D is integrated into the critic network to improve learning-prediction efficiency.Comprehensive simulation studies were conducted on four robotic tasks,and the corresponding results illustrate the effectiveness of LST2D.The proposed ACLPF algorithm outperformed DQN,ACER and PPO in terms of sample efficiency and stability,which demonstrated that LST2D can be applied to online learning control problems by incorporating it into the actor-critic architecture.
基金2021 Zhejiang Province Public Welfare Technology Application Research Funding Project,No.LGC21H160002Basic Scientific Research Projects in Wenzhou City in 2022,No.Y20220885Wenzhou Medical University 2021 Higher Education Teaching Reform Project,No.JG2021167.
文摘BACKGROUND Laparoscopic rectal cancer radical surgery is a complex procedure affected by various factors.However,the existing literature lacks standardized parameters for the pelvic region and soft tissues,which hampers the establishment of consistent conclusions.AIM To comprehensively assess 16 pelvic and 7 soft tissue parameters through computerized tomography(CT)-based three-dimensional(3D)reconstruction,providing a strong theoretical basis to address challenges in laparoscopic rectal cancer radical surgery.METHODS We analyzed data from 218 patients who underwent radical laparoscopic surgery for rectal cancer,and utilized CT data for 3D pelvic reconstruction.Specific anatomical points were carefully marked and measured using advanced 3D modeling software.To analyze the pelvic and soft tissue parameters,we emp-loyed statistical methods including paired sample t-tests,Wilcoxon rank-sum tests,and correlation analysis.RESULTS The investigation highlighted significant sex disparities in 14 pelvic bone parameters and 3 soft tissue parameters.Males demonstrated larger measurements in pelvic depth and overall curvature,smaller measurements in pelvic width,a larger mesorectal fat area,and a larger anterior-posterior abdominal diameter.By contrast,females exhibited wider pelvises,shallower depth,smaller overall curvature,and an increased amount of subcutaneous fat tissue.However,there were no significant sex differences observed in certain parameters such as sacral curvature height,superior pubococcygeal diameter,rectal area,visceral fat area,waist circumference,and transverse abdominal diameter.CONCLUSION The reconstruction of 3D CT data enabled accurate pelvic measurements,revealing significant sex differences in both pelvic and soft tissue parameters.This study design offer potential in predicting surgical difficulties and creating personalized surgical plans for male rectal cancer patients with a potentially“difficult pelvis”,ultimately improving surgical outcomes.Further research and utilization of these parameters could lead to enhanced surgical methods and patient care in laparoscopic rectal cancer radical surgery.
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
文摘Women represent the majority of patients with psychiatric diagnoses and also the largest users of psychotropic drugs.There are inevitable differences in efficacy,side effects and long-term treatment response between men and women.Psychopharmacological research needs to develop adequately powered animal and human trials aimed to consider pharmacokinetics and pharmacodynamics of central nervous system drugs in both male and female subjects.Healthcare professionals have the responsibility to prescribe sex-specific psychopharmacotherapies with a priority to differentiate between men and women in order to minimize adverse drugs reactions,to maximize therapeutic effectiveness and to provide personalized management of care.
基金This work was financially supported by the Key Science and Technology Project of Longmen Laboratory(No.LMYLKT-001)Innovation and Entrepreneurship Training Program for College Students of Henan Province(No.202310464050)。
文摘Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.