期刊文献+
共找到2,489篇文章
< 1 2 125 >
每页显示 20 50 100
A-high-order Accuraqcy Implicit Difference Scheme for Solving the Equation of Parabolic Type 被引量:7
1
作者 马明书 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第2期94-97,共4页
In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(... In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method. 展开更多
关键词 equation of one_dimension parabolic type high_order accuracy implicit difference scheme
下载PDF
A FAMILY OF HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEMES WITH BRANCHING STABILITY FOR SOLVING 3-D PARABOLIC PARTIAL DIFFERENTIAL EQUATION
2
作者 马明书 王同科 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第10期1207-1212,共6页
A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and t... A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)). 展开更多
关键词 high-order accuracy explicit difference scheme branching stability 3-D parabolic PDE
下载PDF
Blow-Up and Decay Estimate in a Logarithmic p-Laplace Parabolic Equation
3
作者 LI Ping LI Feng-jie 《Chinese Quarterly Journal of Mathematics》 2024年第4期331-354,共24页
This paper deals with an initial-boundary value problem of a fourth-order parabolic equation involving Logarithmic type p-Laplacian,which could be proposed as a model for the epitaxial growth of thin films.By using th... This paper deals with an initial-boundary value problem of a fourth-order parabolic equation involving Logarithmic type p-Laplacian,which could be proposed as a model for the epitaxial growth of thin films.By using the variational method and the logarithmic type Sobolev inequality,we give some threshold results for blow-up solutions and global solutions,which could be classified by the initial energy.The asymptotic estimates about blow-up time and decay estimate of weak solutions are obtained. 展开更多
关键词 High order parabolic equation Blow-up time Decay estimate Global existence Logarithmic type p-Laplacian
下载PDF
Global Existence and Decay of Solutions for a Class of a Pseudo-Parabolic Equation with Singular Potential and Logarithmic Nonlocal Source
4
作者 Xiaoxin Yang 《Journal of Applied Mathematics and Physics》 2024年第1期181-193,共13页
This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz... This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay. 展开更多
关键词 Nonlocal parabolic equation Singular Potential Logarithmic Nonlocal Source Global Existence DECAY
下载PDF
A NEW HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING THREE-DIMENSIONAL PARABOLIC EQUATIONS
5
作者 马明书 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期497-501,共5页
In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gam... In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)). 展开更多
关键词 high-order accuracy explicit difference scheme three-dimensional parabolic equation
全文增补中
High-Order Soliton Solutions and Hybrid Behavior for the (2 + 1)-Dimensional Konopelchenko-Dubrovsky Equations
6
作者 Xingying Li Yin Ji 《Journal of Applied Mathematics and Physics》 2024年第7期2452-2466,共15页
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ... In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons. 展开更多
关键词 Konopelchenko-Dubrovsky equations Hirota Bilinear Method M-Order Lump Solutions high-order Hybrid Solutions Interaction Behavior
下载PDF
An Explicit Difference Scheme with High Accuracy and Branching Stability for Solving Parabolic Partial Differential Equation 被引量:4
7
作者 马明书 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第4期98-103,共6页
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△... This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2. 展开更多
关键词 parabolic type equation explicit difference scheme high accuracy branching stability truncation er
下载PDF
Oscillation of Systems of Parabolic Differential Equations with Deviating Arguments 被引量:1
8
作者 邓立虎 王宏洲 葛渭高 《Journal of Beijing Institute of Technology》 EI CAS 2001年第1期12-16,共5页
To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem... To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained. 展开更多
关键词 systems of parabolic differential equations boundary value problem deviating arguments OSCILLATION
下载PDF
CALCULATION OF TWO-DIMENSIONAL PARABOLIC STABILITY EQUATIONS 被引量:1
9
作者 王伟志 唐登斌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第1期36-41,共6页
Two dimensional parabolic stability equations (PSE) are numerically solved using expansions in orthogonal functions in the normal direction.The Chebyshev polynomials approximation,which is a very useful form of ortho... Two dimensional parabolic stability equations (PSE) are numerically solved using expansions in orthogonal functions in the normal direction.The Chebyshev polynomials approximation,which is a very useful form of orthogonal expansions, is applied to solving parabolic stability equations. It is shown that results of great accuracy are effectively obtained.The availability of using Chebyshev approximations in parabolic stability equations is confirmed. 展开更多
关键词 parabolic stability equations Chebyshev approximations two dimensional equation
下载PDF
IDENTIFICATION OF PARAMETERS IN SEMILINEAR PARABOLIC EQUATIONS 被引量:9
10
作者 刘振海 《Acta Mathematica Scientia》 SCIE CSCD 1999年第2期175-180,共6页
An optimization theoretic approach of coefficients in semilinear parabolic equation is presented. It is based on convex analysis techniques. General theorems on existence are proved in L1 setting. A necessary conditio... An optimization theoretic approach of coefficients in semilinear parabolic equation is presented. It is based on convex analysis techniques. General theorems on existence are proved in L1 setting. A necessary condition is given for the solutions of the parameter estimatioll problem. 展开更多
关键词 IDENTIFICATION COEFFICIENTS semilinear parabolic equations.
下载PDF
Perfectly Matched Layer for an Elastic Parabolic Equation Model in Ocean Acoustics 被引量:5
11
作者 XU Chuanxiu ZHANG Haigang +3 位作者 PIAO Shengchun YANG Shi’e SUN Sipeng TANG Jun 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第1期57-64,共8页
The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze... The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide(Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer(ABL) both in acoustic and seismo-acoustic sound propagation modeling. 展开更多
关键词 ELASTIC parabolic equation perfectly matched LAYER artificial absorbing LAYER
下载PDF
A lumped mass nonconforming finite element method for nonlinear parabolic integro-differential equations on anisotropic meshes 被引量:6
12
作者 SHI Dong-yang WANG Hui-min LI Zhi-yan Dept. of Math., Zhengzhou Univ., Zhengzhou 450052, China 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第1期97-104,共8页
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d... A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection. 展开更多
关键词 nonlinear parabolic integro-differential equation nonconforming finite element anisotropic mesh lumped mass error estimate
下载PDF
Highly efficient H^1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation 被引量:7
13
作者 石东洋 廖歆 唐启立 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第7期897-912,共16页
A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation ... A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method. 展开更多
关键词 parabolic integro-differential equation H1-Galerkin mixed finite elementmethod (MFEM) linear triangular element asymptotic expansion superconvergence andextrapolation
下载PDF
BLOW-UP PROBLEMS FOR NONLINEAR PARABOLIC EQUATIONS ON LOCALLY FINITE GRAPHS 被引量:4
14
作者 Yong LIN Yiting WU +2 位作者 Department of Mathematics Renmin University of China 《Acta Mathematica Scientia》 SCIE CSCD 2018年第3期843-856,共14页
Let G =(V, E) be a locally finite connected weighted graph, and ? be the usual graph Laplacian. In this article, we study blow-up problems for the nonlinear parabolic equation ut = ?u + f(u) on G. The blow-up p... Let G =(V, E) be a locally finite connected weighted graph, and ? be the usual graph Laplacian. In this article, we study blow-up problems for the nonlinear parabolic equation ut = ?u + f(u) on G. The blow-up phenomenons for ut = ?u + f(u) are discussed in terms of two cases:(i) an initial condition is given;(ii) a Dirichlet boundary condition is given. We prove that if f satisfies appropriate conditions, then the corresponding solutions will blow up in a finite time. 展开更多
关键词 BLOW-UP parabolic equations locally finite graphs differential inequalities
下载PDF
A REMARK OF THE HLDER ESTIMATE OFSOLUTIONS OF SOME DEGENERATE PARABOLICEQUATIONS 被引量:2
15
作者 钱黎文 范文涛 《Acta Mathematica Scientia》 SCIE CSCD 1999年第4期463-468,共6页
In this paper, the Cauchy problem of the degenerate parabolic equationsis studied for some cases, and the explicit Holder estimates of the solution u with respectto x is given.
关键词 CAUCHY problem DEGENERATE parabolic equation H LDER ESTIMATE
下载PDF
EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR NONLINEAR PARABOLIC EQUATIONS WITH VARIABLE EXPONENT OF NONLINEARITY 被引量:3
16
作者 郭斌 高文杰 《Acta Mathematica Scientia》 SCIE CSCD 2012年第3期1053-1062,共10页
The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They a... The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They apply the method of parabolic regularization and Galerkin's method to prove the existence of solutions to the mentioned problem and then prove the uniqueness of the weak solution by arguing by contradiction. The authors prove that the solution approaches 0 in L^2 (Ω) norm as t →∞. 展开更多
关键词 Nonlinear parabolic equation nonstandard growth condition localization of solutions
下载PDF
A high-order splitting scheme for the advection diffusion equation 被引量:3
17
作者 ZHENG Yong-hong SHEN Yong-ming QIU Da-hong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2001年第4期444-448,共5页
A high-order splitting scheme for the advection-diffusion equation of pollutants is proposed in this paper. The multidimensional advection-diffusion equation is splitted into several one-dimensional equations that are... A high-order splitting scheme for the advection-diffusion equation of pollutants is proposed in this paper. The multidimensional advection-diffusion equation is splitted into several one-dimensional equations that are solved by the scheme. Only three spatial grid points are needed in each direction and the scheme has fourth-order spatial accuracy. Several typically pure advection and advection-diffusion problems are simulated. Numerical results show that the accuracy of the scheme is much higher than that of the classical schemes and the scheme can he efficiently solved with little programming effort. 展开更多
关键词 POLLUTANTS advecton-diffusion equation high-order scheme numerical modelling
下载PDF
A REDUCED-ORDER MFE FORMULATION BASED ON POD METHOD FOR PARABOLIC EQUATIONS 被引量:2
18
作者 罗振东 李磊 孙萍 《Acta Mathematica Scientia》 SCIE CSCD 2013年第5期1471-1484,共14页
In this paper, we extend the applications of proper orthogonal decomposition (POD) method, i.e., apply POD method to a mixed finite element (MFE) formulation naturally satisfied Brezz-Babu^ka for parabolic equatio... In this paper, we extend the applications of proper orthogonal decomposition (POD) method, i.e., apply POD method to a mixed finite element (MFE) formulation naturally satisfied Brezz-Babu^ka for parabolic equations, establish a reduced-order MFE formulation with lower dimensions and sufficiently high accuracy, and provide the error estimates between the reduced-order POD MFE solutions and the classical MFE solutions and the implementation of algorithm for solving reduced-order MFE formulation. Some numerical examples illustrate the fact that the results of numerical computation are consis- tent with theoretical conclusions. Moreover, it is shown that the new reduced-order MFE formulation based on POD method is feasible and efficient for solving MFE formulation for parabolic equations. 展开更多
关键词 proper orthogonal decomposition method mixed finite element formulation parabolic equation error estimate
下载PDF
Some Results on a Class of Nonlinear Degenerate Parabolic Equations Not in Divergence Form 被引量:5
19
作者 周文书 伍卓群 高文杰 《Northeastern Mathematical Journal》 CSCD 2003年第4期291-294,共4页
关键词 degenerate parabolic equation not in divergence form EXISTENCE nonunique-ness LOCALIZATION
下载PDF
DISAPPEARANCE OF INTERFACES FOR DEGENERATE PARABOLIC EQUATIONS WITH VARIABLE DENSITY AND ABSORPTION 被引量:2
20
作者 胡学刚 穆春来 《Acta Mathematica Scientia》 SCIE CSCD 2007年第4期735-742,共8页
In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite ... In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite time under some assumptions on the density functions. 展开更多
关键词 Disappearance of interface degenerate parabolic equation variable density absorption
下载PDF
上一页 1 2 125 下一页 到第
使用帮助 返回顶部