There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoi...There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoirs and thin interbeds.This study proposes a novel method to constrain improving seismic resolution in the time and frequency domain.The expected wavelet spectrum is used in the frequency domain to broaden the seismic spectrum range and increase the octave.In the time domain,the Frobenius vector regularization of the Hessian matrix is used to constrain the horizontal continuity of the seismic data.It eff ectively protects the signal-to-noise ratio of seismic data while the longitudinal seismic resolution is improved.This method is applied to actual post-stack seismic data and pre-stack gathers dividedly.Without abolishing the phase characteristics of the original seismic data,the time resolution is signifi cantly improved,and the structural features are clearer.Compared with the traditional spectral simulation and deconvolution methods,the frequency distribution is more reasonable,and seismic data has higher resolution.展开更多
The prime purpose for the image reconstruction of a multi-frame super-resolution is to reconstruct a higher-resolution image through incorporating the knowledge obtained from a series of relevant low-resolution images...The prime purpose for the image reconstruction of a multi-frame super-resolution is to reconstruct a higher-resolution image through incorporating the knowledge obtained from a series of relevant low-resolution images,which is useful in numerousfields.Nevertheless,super-resolution image reconstruction methods are usually damaged by undesirable restorative artifacts,which include blurring distortion,noises,and stair-casing effects.Consequently,it is always challenging to achieve balancing between image smoothness and preservation of the edges inside the image.In this research work,we seek to increase the effectiveness of multi-frame super-resolution image reconstruction by increasing the visual information and improving the automated machine perception,which improves human analysis and interpretation processes.Accordingly,we propose a new approach to the image reconstruction of multi-frame super-resolution,so that it is created through the use of the regularization framework.In the proposed approach,the bilateral edge preserving and bilateral total variation regularizations are employed to approximate a high-resolution image generated from a sequence of corresponding images with low-resolution to protect significant features of an image,including sharp image edges and texture details while preventing artifacts.The experimental results of the synthesized image demonstrate that the new proposed approach has improved efficacy both visually and numerically more than other approaches.展开更多
In this paper,we propose a discrepancy rule-based method to automatically choose the regularization parameters for total variation image restoration problems. The regularization parameters are adjusted dynamically in ...In this paper,we propose a discrepancy rule-based method to automatically choose the regularization parameters for total variation image restoration problems. The regularization parameters are adjusted dynamically in each iteration.Numerical results are shown to illustrate the performance of the proposed method.展开更多
Image restoration is a complicated process in which the original information can be recovered from the degraded image model caused by lots of factors.Mathematically,image restoration problems are ill-posed inverse pro...Image restoration is a complicated process in which the original information can be recovered from the degraded image model caused by lots of factors.Mathematically,image restoration problems are ill-posed inverse prob-lems.In this paper image restoration models and algorithms based on variational regularization are surveyed.First,we review and analyze the typical models for denoising,deblurring and inpainting.Second,we construct a unified restoration model based on variational regularization and summarize the typical numerical methods for the model.At last,we point out eight diffcult problems which remain open in this field.展开更多
In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoi...In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.展开更多
In order to avoid staircasing effect and preserve small scale texture information for the classical total variation regularization, a new minimization energy functional model for image decomposition is proposed. First...In order to avoid staircasing effect and preserve small scale texture information for the classical total variation regularization, a new minimization energy functional model for image decomposition is proposed. Firstly, an adaptive regularization based on the local feature of images is introduced to substitute total variational regularization. The oscillatory component containing texture and/or noise is modeled in generalized function space div (BMO). And then, the existence and uniqueness of the minimizer for proposed model are proved. Finally, the gradient descent flow of the Euler-Lagrange equations for the new model is numerically implemented by using a finite difference method. Experiments show that the proposed model is very robust to noise, and the staircasing effect is avoided efficiently, while edges and textures are well remained.展开更多
A novel rcgularization-based approach is presented for super-resolution reconstruction in order to achieve good tradeoff between noise removal and edge preservation. The method is developed by using L1 norm as data fi...A novel rcgularization-based approach is presented for super-resolution reconstruction in order to achieve good tradeoff between noise removal and edge preservation. The method is developed by using L1 norm as data fidelity term and anisotropic fourth-order diffusion model as a regularization item to constrain the smoothness of the reconstructed images. To evaluate and prove the performance of the proposed method, series of experiments and comparisons with some existing methods including bi-cubic interpolation method and bilateral total variation method are carried out. Numerical results on synthetic data show that the PSNR improvement of the proposed method is approximately 1.0906 dB on average compared to bilateral total variation method, and the results on real videos indicate that the proposed algorithm is also effective in terms of removing visual artifacts and preserving edges in restored images.展开更多
In[3],Chan and Wong proposed to use total variational regularization for both images and point spread functions in blind deconvolution.Their experimental results show that the detail of the restored images cannot be r...In[3],Chan and Wong proposed to use total variational regularization for both images and point spread functions in blind deconvolution.Their experimental results show that the detail of the restored images cannot be recovered.In this paper,we consider images in Lipschitz spaces,and propose to use Lipschitz regularization for images and total variational regularization for point spread functions in blind deconvolution.Our experimental results show that such combination of Lipschitz and total variational regularization methods can recover both images and point spread functions quite well.展开更多
Confocal laser scanning microscopy(CLSM) has emerged as one of the most advanced fluorescence cell imaging techniques in the field of biomedicine. However, fluorescence cell imaging is limited by spatial blur and addi...Confocal laser scanning microscopy(CLSM) has emerged as one of the most advanced fluorescence cell imaging techniques in the field of biomedicine. However, fluorescence cell imaging is limited by spatial blur and additive white noise induced by the excitation light. In this paper, a spatially adaptive high-order total variation(SA-HOTV) model for weak fluorescence image restoration is proposed to conduct image restoration. The method consists of two steps: optimizing the deconvolution model of the fluorescence image by the generalized Lagrange equation and alternating direction method of multipliers(ADMM); using spatially adaptive parameters to balance the image fidelity and the staircase effect. Finally, an comparison of SA-HOTV model and Richardson-Lucy model with total variation(RL-TV model) indicates that the proposed method can preserve the image details ultimately,reduce the staircase effect substantially and further upgrade the quality of the restored weak fluorescence image.展开更多
为有效抑制椒盐噪声对图像信息的影响,根据椒盐噪声随机破坏图像中像素值的显著特征,本文提出一种耦合噪声检测的自适应模糊正则化噪声去除模型。一方面,基于L_(1)范数建立数据保真项,实现对图像统计分布进行有效拟合。另一方面,通过对...为有效抑制椒盐噪声对图像信息的影响,根据椒盐噪声随机破坏图像中像素值的显著特征,本文提出一种耦合噪声检测的自适应模糊正则化噪声去除模型。一方面,基于L_(1)范数建立数据保真项,实现对图像统计分布进行有效拟合。另一方面,通过对图像中像素相似性的有效量化实现图像中噪声的检测,并将此耦合至正则项中,使得模型可依据像素点实际受噪声的污染对其施加惩罚程度,最终实现椒盐噪声的自适应模糊去除。本文采用交替方向乘子法(Alternating direction method of multipliers,ADMM)进行模型的数值结果实现,并运用峰值信噪比(Peak signal-to-noise ratio,PSNR)及结构相似性(Structural similarity,SSIM)对实验结果进行评定。实验结果表明,本文提出的模型在PSNR及SSIM方面得到显著提升,其中对于灰度图像的去噪实验PSNR最高可提高1.3dB,SSIM最高可提高0.2。展开更多
针对合成孔径雷达(synthetic aperture radar,SAR)稀疏成像中目标反射率易低估、目标结构特征难以精确提取的问题,提出一种基于非凸和相对全变分(relative total variation,RTV)正则化的稀疏SAR成像算法。该算法利用非凸惩罚抑制偏差效...针对合成孔径雷达(synthetic aperture radar,SAR)稀疏成像中目标反射率易低估、目标结构特征难以精确提取的问题,提出一种基于非凸和相对全变分(relative total variation,RTV)正则化的稀疏SAR成像算法。该算法利用非凸惩罚抑制偏差效应、RTV自适应保护图像结构,在交替方向乘子法(alternating direction method of multipliers,ADMM)分布式优化框架下,实现多个正则项的协同优化增强。为更好地提高成像效率和降低内存占用量,利用匹配滤波(match filter,MF)算子构造测量矩阵进行近似观测,并对重建的SAR图像质量进行定量评价。仿真与实测数据处理结果表明,所提方法可有效抑制噪声杂波,在保证空间分辨率的情况下有效提高目标重建精度和辐射分辨率。展开更多
基金supported by the PetroChina Prospective,Basic,and Strategic Technology Research Project(No.2021DJ0606).
文摘There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoirs and thin interbeds.This study proposes a novel method to constrain improving seismic resolution in the time and frequency domain.The expected wavelet spectrum is used in the frequency domain to broaden the seismic spectrum range and increase the octave.In the time domain,the Frobenius vector regularization of the Hessian matrix is used to constrain the horizontal continuity of the seismic data.It eff ectively protects the signal-to-noise ratio of seismic data while the longitudinal seismic resolution is improved.This method is applied to actual post-stack seismic data and pre-stack gathers dividedly.Without abolishing the phase characteristics of the original seismic data,the time resolution is signifi cantly improved,and the structural features are clearer.Compared with the traditional spectral simulation and deconvolution methods,the frequency distribution is more reasonable,and seismic data has higher resolution.
基金the Institute for Research and Consulting Studies at King Khalid University through Corona Research(Fast Track)[Grant Number 3-103S-2020].
文摘The prime purpose for the image reconstruction of a multi-frame super-resolution is to reconstruct a higher-resolution image through incorporating the knowledge obtained from a series of relevant low-resolution images,which is useful in numerousfields.Nevertheless,super-resolution image reconstruction methods are usually damaged by undesirable restorative artifacts,which include blurring distortion,noises,and stair-casing effects.Consequently,it is always challenging to achieve balancing between image smoothness and preservation of the edges inside the image.In this research work,we seek to increase the effectiveness of multi-frame super-resolution image reconstruction by increasing the visual information and improving the automated machine perception,which improves human analysis and interpretation processes.Accordingly,we propose a new approach to the image reconstruction of multi-frame super-resolution,so that it is created through the use of the regularization framework.In the proposed approach,the bilateral edge preserving and bilateral total variation regularizations are employed to approximate a high-resolution image generated from a sequence of corresponding images with low-resolution to protect significant features of an image,including sharp image edges and texture details while preventing artifacts.The experimental results of the synthesized image demonstrate that the new proposed approach has improved efficacy both visually and numerically more than other approaches.
基金supported in part by NSFC Grant No.60702030supported in part by NSFC Grant No.10871075the wavelets and information processing program under a grant from DSTA,Singapore
文摘In this paper,we propose a discrepancy rule-based method to automatically choose the regularization parameters for total variation image restoration problems. The regularization parameters are adjusted dynamically in each iteration.Numerical results are shown to illustrate the performance of the proposed method.
文摘Image restoration is a complicated process in which the original information can be recovered from the degraded image model caused by lots of factors.Mathematically,image restoration problems are ill-posed inverse prob-lems.In this paper image restoration models and algorithms based on variational regularization are surveyed.First,we review and analyze the typical models for denoising,deblurring and inpainting.Second,we construct a unified restoration model based on variational regularization and summarize the typical numerical methods for the model.At last,we point out eight diffcult problems which remain open in this field.
基金The National Natural Science Foundation of China(No.60702069)the Research Project of Department of Education of Zhe-jiang Province (No.20060601)+1 种基金the Natural Science Foundation of Zhe-jiang Province (No.Y1080851)Shanghai International Cooperation onRegion of France (No.06SR07109)
文摘In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.
基金supported by the Science and Technology Foundation Program of Chongqing Municipal Education Committee (KJ091208)
文摘In order to avoid staircasing effect and preserve small scale texture information for the classical total variation regularization, a new minimization energy functional model for image decomposition is proposed. Firstly, an adaptive regularization based on the local feature of images is introduced to substitute total variational regularization. The oscillatory component containing texture and/or noise is modeled in generalized function space div (BMO). And then, the existence and uniqueness of the minimizer for proposed model are proved. Finally, the gradient descent flow of the Euler-Lagrange equations for the new model is numerically implemented by using a finite difference method. Experiments show that the proposed model is very robust to noise, and the staircasing effect is avoided efficiently, while edges and textures are well remained.
基金Projects(60963012,61262034)supported by the National Natural Science Foundation of ChinaProject(211087)supported by the Key Project of Ministry of Education of ChinaProjects(2010GZS0052,20114BAB211020)supported by the Natural Science Foundation of Jiangxi Province,China
文摘A novel rcgularization-based approach is presented for super-resolution reconstruction in order to achieve good tradeoff between noise removal and edge preservation. The method is developed by using L1 norm as data fidelity term and anisotropic fourth-order diffusion model as a regularization item to constrain the smoothness of the reconstructed images. To evaluate and prove the performance of the proposed method, series of experiments and comparisons with some existing methods including bi-cubic interpolation method and bilateral total variation method are carried out. Numerical results on synthetic data show that the PSNR improvement of the proposed method is approximately 1.0906 dB on average compared to bilateral total variation method, and the results on real videos indicate that the proposed algorithm is also effective in terms of removing visual artifacts and preserving edges in restored images.
文摘随着高分辨率对地观测要求的不断提高,合成孔径雷达(Synthetic Aperture Radar,SAR)的应用将越来越广泛。针对高分辨率SAR成像存在数据量大、存储难度高、计算时间长等问题,目前常用的解决方法是在SAR成像模型中引入压缩感知(Compressed Sensing,CS)的方法降低采样率和数据量。通常使用单一的正则化作为约束条件,可以抑制点目标旁瓣,实现点目标特征增强,但是观测场景中可能存在多种目标类型,因此使用单一正则化约束难以满足多种特征增强的要求。本文提出了一种基于复合正则化的稀疏高分辨SAR成像方法,通过压缩感知降低数据量,并使用多种正则化的线性组合作为约束条件,增强观测场景中不同类型目标的特征,实现复杂场景中高分辨率对地观测的要求。该方法在稀疏SAR成像模型中引入非凸正则化和全变分(Total Variation,TV)正则化作为约束条件,减小稀疏重构误差、增强区域目标的特征,降低噪声对成像结果的影响,提高成像质量;采用改进的交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)实现复合正则化约束的求解,减少计算时间、快速重构图像;使用方位距离解耦算子代替观测矩阵及其共轭转置,进一步降低计算复杂度。仿真和实测数据实验表明,本文所提算法可以对点目标和区域目标进行特征增强,减小计算复杂度,提高收敛性能,实现快速高分辨的图像重构。
基金This research is supported in part by RGC 7046/03P,7035/04P,7035/05P and HKBU FRGs.
文摘In[3],Chan and Wong proposed to use total variational regularization for both images and point spread functions in blind deconvolution.Their experimental results show that the detail of the restored images cannot be recovered.In this paper,we consider images in Lipschitz spaces,and propose to use Lipschitz regularization for images and total variational regularization for point spread functions in blind deconvolution.Our experimental results show that such combination of Lipschitz and total variational regularization methods can recover both images and point spread functions quite well.
基金the National Natural Science Foundation of China(Nos.51605302 and 51675329)
文摘Confocal laser scanning microscopy(CLSM) has emerged as one of the most advanced fluorescence cell imaging techniques in the field of biomedicine. However, fluorescence cell imaging is limited by spatial blur and additive white noise induced by the excitation light. In this paper, a spatially adaptive high-order total variation(SA-HOTV) model for weak fluorescence image restoration is proposed to conduct image restoration. The method consists of two steps: optimizing the deconvolution model of the fluorescence image by the generalized Lagrange equation and alternating direction method of multipliers(ADMM); using spatially adaptive parameters to balance the image fidelity and the staircase effect. Finally, an comparison of SA-HOTV model and Richardson-Lucy model with total variation(RL-TV model) indicates that the proposed method can preserve the image details ultimately,reduce the staircase effect substantially and further upgrade the quality of the restored weak fluorescence image.
文摘为有效抑制椒盐噪声对图像信息的影响,根据椒盐噪声随机破坏图像中像素值的显著特征,本文提出一种耦合噪声检测的自适应模糊正则化噪声去除模型。一方面,基于L_(1)范数建立数据保真项,实现对图像统计分布进行有效拟合。另一方面,通过对图像中像素相似性的有效量化实现图像中噪声的检测,并将此耦合至正则项中,使得模型可依据像素点实际受噪声的污染对其施加惩罚程度,最终实现椒盐噪声的自适应模糊去除。本文采用交替方向乘子法(Alternating direction method of multipliers,ADMM)进行模型的数值结果实现,并运用峰值信噪比(Peak signal-to-noise ratio,PSNR)及结构相似性(Structural similarity,SSIM)对实验结果进行评定。实验结果表明,本文提出的模型在PSNR及SSIM方面得到显著提升,其中对于灰度图像的去噪实验PSNR最高可提高1.3dB,SSIM最高可提高0.2。
文摘针对合成孔径雷达(synthetic aperture radar,SAR)稀疏成像中目标反射率易低估、目标结构特征难以精确提取的问题,提出一种基于非凸和相对全变分(relative total variation,RTV)正则化的稀疏SAR成像算法。该算法利用非凸惩罚抑制偏差效应、RTV自适应保护图像结构,在交替方向乘子法(alternating direction method of multipliers,ADMM)分布式优化框架下,实现多个正则项的协同优化增强。为更好地提高成像效率和降低内存占用量,利用匹配滤波(match filter,MF)算子构造测量矩阵进行近似观测,并对重建的SAR图像质量进行定量评价。仿真与实测数据处理结果表明,所提方法可有效抑制噪声杂波,在保证空间分辨率的情况下有效提高目标重建精度和辐射分辨率。