In order to clarify the effect of spherical light-weight aggregates addition on properties of A12 07 - Si02 system castables, adopting ATO mullite traditional light-weight aggregates and ATO mullite spherical light-we...In order to clarify the effect of spherical light-weight aggregates addition on properties of A12 07 - Si02 system castables, adopting ATO mullite traditional light-weight aggregates and ATO mullite spherical light-weight aggre- gates, bauxite homogenization powder, microsilica , cal- cium aluminate cement as main raw materials, light- weight Al2 03 - SiO2 system castables were prepared by replacing conventional light-weight aggregate with spherical light-weight aggregates. The effects of spheri- cal light-weight aggregates addition on workability, me- chanical properties of castables after heated at different temperatures were researched; the microstructure of the aggregates was analyzed by SEM. The result shows that the introduction of spherical light-weight aggregates can significantly improve the flowability and reduce the water addition of the castables. Water demand of the castable is reduced from 18% with the conventional light-weight aggregates to 14% with spherical light-weight aggre- gates. In addition, light-weight castables prepared by spherical aggregates can keep the same workability with- in a wider range of water addition. Therefore, spherical aggregates are user-friendly. The introduction of spheri- cal light-weight aggregates is favorable to packing densi- ty and mechanical properties of castables, such as cold crushing strength, cold modulus of rupture, hot modulus of rupture at 1 200℃.展开更多
Washing pre-treatrnent of municipal solid waste incineration (MSWI) fly ash blended with shale and sludge was utilized in the manufacture of light-weight aggregates and processed to form ceramic pellets. A formula u...Washing pre-treatrnent of municipal solid waste incineration (MSWI) fly ash blended with shale and sludge was utilized in the manufacture of light-weight aggregates and processed to form ceramic pellets. A formula uniform design was performed to arrange the mixture ratio of the materials. The optimal mixture ratio of the materials was determined by measuring the bulk density, granule strength, and 1 h water absorption of the pellets. It is shown that the optimal mixture ratios of materials, MSWI fly ash, shale, and sludge, are 23.16%, 62.58%, and 14.25% (mass fraction), respectively. The performance testing indicators of light-weight aggregates are obtained under the optimum mixture ratio: bulk density of 613 kg/m3, granule strength of 821N, and 1 h water absorption of 11.6%, meeting 700 grade light-aggregate of GB/T 17431.2--1998 standard. The results suggest that utilization of MSWI fly ash in light-weight aggregates is an effective method and a potential means to create much more values.展开更多
基金The National Natural Science Foundation of China(Grant No.51402089)
文摘In order to clarify the effect of spherical light-weight aggregates addition on properties of A12 07 - Si02 system castables, adopting ATO mullite traditional light-weight aggregates and ATO mullite spherical light-weight aggre- gates, bauxite homogenization powder, microsilica , cal- cium aluminate cement as main raw materials, light- weight Al2 03 - SiO2 system castables were prepared by replacing conventional light-weight aggregate with spherical light-weight aggregates. The effects of spheri- cal light-weight aggregates addition on workability, me- chanical properties of castables after heated at different temperatures were researched; the microstructure of the aggregates was analyzed by SEM. The result shows that the introduction of spherical light-weight aggregates can significantly improve the flowability and reduce the water addition of the castables. Water demand of the castable is reduced from 18% with the conventional light-weight aggregates to 14% with spherical light-weight aggre- gates. In addition, light-weight castables prepared by spherical aggregates can keep the same workability with- in a wider range of water addition. Therefore, spherical aggregates are user-friendly. The introduction of spheri- cal light-weight aggregates is favorable to packing densi- ty and mechanical properties of castables, such as cold crushing strength, cold modulus of rupture, hot modulus of rupture at 1 200℃.
基金Project(CSTC.2011AC7065) supported by the Science & Technology Committee of Chongqing, China Project(50808184) supported by the National Natural Science Foundation of China
文摘Washing pre-treatrnent of municipal solid waste incineration (MSWI) fly ash blended with shale and sludge was utilized in the manufacture of light-weight aggregates and processed to form ceramic pellets. A formula uniform design was performed to arrange the mixture ratio of the materials. The optimal mixture ratio of the materials was determined by measuring the bulk density, granule strength, and 1 h water absorption of the pellets. It is shown that the optimal mixture ratios of materials, MSWI fly ash, shale, and sludge, are 23.16%, 62.58%, and 14.25% (mass fraction), respectively. The performance testing indicators of light-weight aggregates are obtained under the optimum mixture ratio: bulk density of 613 kg/m3, granule strength of 821N, and 1 h water absorption of 11.6%, meeting 700 grade light-aggregate of GB/T 17431.2--1998 standard. The results suggest that utilization of MSWI fly ash in light-weight aggregates is an effective method and a potential means to create much more values.