It was shown experimentally that for a 65-fs 17-J pulse,the effect of filamentation instability,also known as small-scale self-focusing,is much weaker than that predicted by stationary and nonstationary theoretical mo...It was shown experimentally that for a 65-fs 17-J pulse,the effect of filamentation instability,also known as small-scale self-focusing,is much weaker than that predicted by stationary and nonstationary theoretical models for high B-integral values.Although this discrepancy has been left unexplained at the moment,in practice no signs of filamentation may allow a breakthrough in nonlinear pulse post-compression at high laser energy.展开更多
An effect of the high-power electromagnetic pulses onto the droplet of coal-water slurry inside the furnace was investigated.In contrary to the previously investigated laser-induced fuel atomization that occurs at the...An effect of the high-power electromagnetic pulses onto the droplet of coal-water slurry inside the furnace was investigated.In contrary to the previously investigated laser-induced fuel atomization that occurs at the room temperature,the pre-heated(to 400 K)slurry becomes dry enough to prevent the explosion-like steam formation.Thus,fuel does not atomize and the ignition does not accelerate.Furthermore,the absorption of several laser pulses leads to evident sintering of irradiated surface with following increase of the ignition delay time for up to 24%.Variation of the pulse energy in range 48-118 mJ(corresponding intensity up to 2.4 J·cm^-2)leads to certain variation of the increase of ignition delay.The strong pulsed overheating of the coal water slurry which does not initiate the fine atomization of the fuel generally makes its ignition longer.展开更多
A type of novel inverter power supply system for high-power twin-wire pulsed gas metal arc welding (GMAW) is presented mainly for dealing with the disadvantages of the conventional power supply for twin-wire pulsed ...A type of novel inverter power supply system for high-power twin-wire pulsed gas metal arc welding (GMAW) is presented mainly for dealing with the disadvantages of the conventional power supply for twin-wire pulsed GMA W of which the output power is generally difficult to increase due to limitations of the power of semiconductors and the power density of magnetic devices. In the power supplies for the master and slave arcs, the digital signal processor (DSP) TMS320F28335 is used to form the DSP- based synergic control system for parallel high-power pulsed GMA W, which achieves high-power output of two parallel inverters controlled by a single DSP ; master-slave communication is achieved by using e controller area network (eCAN)module of DSP, thas realizing anti-phase pulse output of high-power twin-wire pulsed GMA W and reducing the interference between twin arcs. The experiment results demonstrate that the designed inverter power supply system for high-power twin-wire pulsed GMAW can bring about high-power efficiency of welding, stable welding process and proper formation of welds.展开更多
To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the...To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions is proposed. The spatiotemporal characteristics of femtosecond laser pulses output from the Ti sapphire regenerative amplifier system are experimentally measured by the proposed method. It was found that the complex spatial characteristics are measured accurately.The pulse widths at different spatial positions are various which obey the Gaussian distribution.The pulse width at the same spatial position becomes narrow with the increase in input average power when femtosecond laser pulses pass through a carbon disulfide CS2 nonlinear medium.The experimental results verify that the proposed method is valid for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions.展开更多
To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light source...To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.展开更多
In this paper, an experimental study of collinear geometry double-pulse femtosecond LIBS was performed on a Ni sample in ambient air in an effort to clarify the contributing processes responsible for the signal enhanc...In this paper, an experimental study of collinear geometry double-pulse femtosecond LIBS was performed on a Ni sample in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with the single-pulse case. Doublepulse LIBS spectra show a very clear enhancement when an optimum inter-pulse delay was used. The influences of the inter-pulse delay between two pulses on the LIBS signal intensity, electron temperature and density were investigated. It is most remarkable that the evolutions of signal enhancement and electron temperature versus the inter-pulse delay showed the same behavior and revealed two main regimes of interaction. These results provide additional insight into the possible emission enhancement mechanisms in the double pulse configuration.展开更多
A train of three equally spaced femtosecond laser pulses is employed to control the photoionization/photodissociation processes of cyclopentanone. With the increase of pulse separation, a strong modulation of product ...A train of three equally spaced femtosecond laser pulses is employed to control the photoionization/photodissociation processes of cyclopentanone. With the increase of pulse separation, a strong modulation of product ion yield is observed. More than ten-fold changes of ion yield ratio between different products can be realized. The experimental observations further explain the compositions and formation pathways of peaks in the mass spectra. The controlling mechanisms are also discussed.展开更多
This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the...This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the frequency- resolved optical gating (FROG) technique. With the theoretical simulation, it concludes that the quality of the generated output array is relevant to the number of pixels and the spacing between the components.展开更多
The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa...The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 × 10^16W/cm^2 laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.展开更多
Irradiated by femtosecond laser pulses with different energies, opened cone targets behave very differently in the transmission of incident laser pulses. The targets, each with an opening angle of 71° and an open...Irradiated by femtosecond laser pulses with different energies, opened cone targets behave very differently in the transmission of incident laser pulses. The targets, each with an opening angle of 71° and an opening of 5 μm, are fabricated using standard semiconductor technology. When the incident laser energy is low and no pre-plasma is generated on the side walls of the cones, the cone target acts like an optical device to reflect the laser pulse, and 15% of the laser energy can be transmitted through the cones. In contrast, when the incident laser energy is high enough to generate pre-plasmas by the pre-pulse of the main pulse that fills the inner cone, the cone with the plasmas will block the transmission of the laser, which leads to a decrease in laser transmission compared with the low-energy case with no plasma. Simulation results using optical software in the low-energy case, and using the particle-in-cell code in the high-energy case, are primarily in agreement with the experimental results.展开更多
This review considers the fundamental dynamical processes of metal nanoparticles during and after the impact of a femtosecond laser pulse on a nanoparticle,including the absorption of photons.Understanding the sequenc...This review considers the fundamental dynamical processes of metal nanoparticles during and after the impact of a femtosecond laser pulse on a nanoparticle,including the absorption of photons.Understanding the sequence of events after photon absorption and their timescales is important for many applications of nanoparticles.Various processes are discussed,starting with optical absorption by electrons,proceeding through the relaxation of the electrons due to electron–electron scattering and electron–phonon coupling,and ending with the dissipation of the nanoparticle energy into the environment.The goal is to consider the timescales,values,and temperature dependences of the electron heat capacity and the electron–phonon coupling parameter that describe these processes and how these dependences affect the electron energy relaxation.Two-and four-temperature models for describing electron–phonon relaxation are discussed.Significant emphasis is paid to the proposed analytical approach to modeling processes during the action of a femtosecond laser pulse on a metal nanoparticle.These consider the temperature dependences of the electron heat capacity and the electron–phonon coupling factor of the metal.The entire process is divided into four stages:(1)the heating of the electron system by a pulse,(2)electron thermalization,(3)electron–phonon energy exchange and the equalization of the temperature of the electrons with the lattice,and(4)cooling of the nanoparticle.There is an appropriate analytical description of each stage.The four-temperature model can estimate the parameters of the laser and nanoparticles needed for applications of femtosecond laser pulses and nanoparticles.展开更多
We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses i...We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber(NL-PCF),the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm.In experiment,by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses,femtosecond laser with tuning range of 900-1290 nm is realized.The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.展开更多
This paper reports on the photol spectra of ZnSe single crystal with trace chlorine excited by the femtosecond laser pulse. Three emission bands, including second-harmonic-generation, two-photon-excited peak and a bro...This paper reports on the photol spectra of ZnSe single crystal with trace chlorine excited by the femtosecond laser pulse. Three emission bands, including second-harmonic-generation, two-photon-excited peak and a broad band at 500-700nm, were detected. The thermal strain induced by femtosecond pulse strongly influences the photoluminescence of ZnSe crystal. The corresponding strain ~ in ZnSe crystal is estimated to be about 8.8× 10^-3 at room temperature. The zinc-vacancy, as the main point defect induced by femtosecond pulse, is successfully used to interpret the broad emission at 500-700nm. The research shows that self-activated luminescence possesses the recombination mechanism of donor-vacancy pair, and it is also influenced by a few selenium defects and the temperature. The rapid decrease in photol intensity of two-photon-excited fluorescence and second-harmonic generation emission at lower temperature is attributed to the fact that more point defects result in the thermal activation of the two-photo-absorption energy converting to the stronger recombination emission of chlorine-zinc vacancy in 500-700nm. The experimental results indicate that the femtosecond exciting photoluminescence shows a completely different emission mechanism to that of He-Cd exciting luminescence in ZnSe single crystal. The femtosecond laser exhibits a higher sensitive to the impurity in crystal materials, which can be recommended as an efficient way to estimate the trace impurity in high quality crystals.展开更多
In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire l...In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.展开更多
A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the correspond- ing time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal struc...A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the correspond- ing time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal structures of femtosecond laser pulses, normally not observable by the ordinary intensity autocorrelator, can be detected through intuitively analyz- ing the ultrafast evolution process of the air plasma induced by the femtosecond laser pulses under examination. With this method, existence of pre- and post-pulses has been clearly unveiled within the time window of 4-150 fs in reference with the main 50-fs laser pulses output from a commercial 1-kHz femtosecond laser amplifier. The unique advantage of the proposed method is that it can directly provide valuable information about the pulse temporal structures' effect on the laser-induced ionization or material ablation.展开更多
The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting com...The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting comb-like structures. These structures result from the quantum interferences between photoelectron wave packets generated at different times. The width and the localization of each peak as well as the number of peaks are determined by all the laser and x-ray parameters. Most of peak heights of the PES are higher than the classical predictions.展开更多
In this paper, we present a study on the effect of inter-pulse delay using femtosecond double-pulse laser-induced breakdown spectroscopy in a collinear geometry. The temporal evolution of spectral intensity is perform...In this paper, we present a study on the effect of inter-pulse delay using femtosecond double-pulse laser-induced breakdown spectroscopy in a collinear geometry. The temporal evolution of spectral intensity is performed for the lines of Fe I 423.60 nm, Fe I 425.08 nm and Fe I 427.18 nm. It is found that, by selecting appropriate inter-pulse delay, the signal enhancement can be significantly increased compared with the single-pulse case. A three-fold enhancement in the current experiment is obtained. The plasma temperature and electron density are also investigated based on the theory of Boltzmann plot and Stark broadening. We attribute the main mechanism for emission enhancement to the plasma re-heating effect.展开更多
We solve the generalized nonlinear Schr6dinger equation describing the propagation of femtosecond pulses in a nonlinear optical fibre with higher-order dispersions by using the direct approach to perturbation for brig...We solve the generalized nonlinear Schr6dinger equation describing the propagation of femtosecond pulses in a nonlinear optical fibre with higher-order dispersions by using the direct approach to perturbation for bright solitons, and discuss the combined effects of the third- and fourth-order dispersions on velocity, temporal intensity distribution and peak intensity of femtosecond pulses. It is noticeable that the combined effects of the third- and fourth-order dispersions on an initial propagated soliton can partially compensate each other, which seems to be significant for the stability controlling of soliton propagation features.展开更多
The population transfer in a ladder-type atomic system driven by linearly polarized sech-shape femtosecond laser pulses is investigated by numerically solving Schr6dinger equation without including the rotating wave a...The population transfer in a ladder-type atomic system driven by linearly polarized sech-shape femtosecond laser pulses is investigated by numerically solving Schr6dinger equation without including the rotating wave approximation (RWA). It is shown that population transfer is mainly determined by the Rabi frequency (strength) of the driving laser field and the chirp rate, and that the ratio of the dipole moments and the pulse width also have a prominent effect on the population transfer. By choosing appropriate values of the above parameters, complete population transfer can be realized.展开更多
Thermal characteristics of tightly-contacted copper-gold double-layer thin film target under ablation of femtosec- ond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation s...Thermal characteristics of tightly-contacted copper-gold double-layer thin film target under ablation of femtosec- ond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation shows that electron heat flux varies significantly on the boundary of copper-gold film with different maximal electron temperature of 1.15 x 103 K at 5 ps after ablating laser pulse in gold and copper films, which can reach a balance around 12.6 ps and 8.2 ps for a single and double pulse ablation, respectively, and in the meantime, the lattice temperature difference crossing the gold-copper interface is only about 0.04×103 K at the same time scale. It is also found that electron-lattice heat relaxation time increases linearly with laser fluence in both single and double pulse ablation, and a sudden change of the relaxation time appears after the laser energy density exceeds the ablation threshold.展开更多
基金This work was supported by the Ministry of Science and Higher Education of the Russian Federation No.075-15-2020-906(Center of Excellence‘Center of Photonics’).
文摘It was shown experimentally that for a 65-fs 17-J pulse,the effect of filamentation instability,also known as small-scale self-focusing,is much weaker than that predicted by stationary and nonstationary theoretical models for high B-integral values.Although this discrepancy has been left unexplained at the moment,in practice no signs of filamentation may allow a breakthrough in nonlinear pulse post-compression at high laser energy.
基金performed within the framework of the Russian State Assignment“Science”project FSWW-2020-0022Investigations of the ignition techniques of waste-derived fuels were partially supported by the Tomsk Polytechnic University Competitiveness Enhancement Program(project VIU-ISHFVP-197/2019).
文摘An effect of the high-power electromagnetic pulses onto the droplet of coal-water slurry inside the furnace was investigated.In contrary to the previously investigated laser-induced fuel atomization that occurs at the room temperature,the pre-heated(to 400 K)slurry becomes dry enough to prevent the explosion-like steam formation.Thus,fuel does not atomize and the ignition does not accelerate.Furthermore,the absorption of several laser pulses leads to evident sintering of irradiated surface with following increase of the ignition delay time for up to 24%.Variation of the pulse energy in range 48-118 mJ(corresponding intensity up to 2.4 J·cm^-2)leads to certain variation of the increase of ignition delay.The strong pulsed overheating of the coal water slurry which does not initiate the fine atomization of the fuel generally makes its ignition longer.
基金Supported by National Natural Science Foundation of China(No.51205136)Ph.D. Programs Foundation of the Ministry of Education of China(No.20100172120003)+1 种基金Competitive Allocation Project Special Fund of Guangdong Province Chinese Academy of Sciences Comprehensive Strategic Cooperation(No.2013B091500082)The Fundamental Research Funds for the Central Universities(Key Program)(No.2015ZZ084)
文摘A type of novel inverter power supply system for high-power twin-wire pulsed gas metal arc welding (GMAW) is presented mainly for dealing with the disadvantages of the conventional power supply for twin-wire pulsed GMA W of which the output power is generally difficult to increase due to limitations of the power of semiconductors and the power density of magnetic devices. In the power supplies for the master and slave arcs, the digital signal processor (DSP) TMS320F28335 is used to form the DSP- based synergic control system for parallel high-power pulsed GMA W, which achieves high-power output of two parallel inverters controlled by a single DSP ; master-slave communication is achieved by using e controller area network (eCAN)module of DSP, thas realizing anti-phase pulse output of high-power twin-wire pulsed GMA W and reducing the interference between twin arcs. The experiment results demonstrate that the designed inverter power supply system for high-power twin-wire pulsed GMAW can bring about high-power efficiency of welding, stable welding process and proper formation of welds.
基金The National Natural Science Foundation of China(No.61171081,No.61471164)the Natural Science Foundation of Hunan Province(No.14JJ6043)
文摘To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions is proposed. The spatiotemporal characteristics of femtosecond laser pulses output from the Ti sapphire regenerative amplifier system are experimentally measured by the proposed method. It was found that the complex spatial characteristics are measured accurately.The pulse widths at different spatial positions are various which obey the Gaussian distribution.The pulse width at the same spatial position becomes narrow with the increase in input average power when femtosecond laser pulses pass through a carbon disulfide CS2 nonlinear medium.The experimental results verify that the proposed method is valid for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions.
基金supported by National Natural Science Foundation of China(No.11475202,11405187)the Youth Innovation Association of Chinese Academy of SciencesKey Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-SLH001)
文摘To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.
基金supported by National Natural Science Foundation of China(Nos.11135002,11075069,91026021 and 11075068)Fundamental Research Funds for the Central Universities of China(lzujbky-2014-13,lzujbky-2014-14,lzujbky-2014-10 and lzujbky-2014-15)
文摘In this paper, an experimental study of collinear geometry double-pulse femtosecond LIBS was performed on a Ni sample in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with the single-pulse case. Doublepulse LIBS spectra show a very clear enhancement when an optimum inter-pulse delay was used. The influences of the inter-pulse delay between two pulses on the LIBS signal intensity, electron temperature and density were investigated. It is most remarkable that the evolutions of signal enhancement and electron temperature versus the inter-pulse delay showed the same behavior and revealed two main regimes of interaction. These results provide additional insight into the possible emission enhancement mechanisms in the double pulse configuration.
基金Project supported by the National Basic Research Program of China (973 Program) (Grant No.2013CB922200)the National Natural Science Foundation of China,(Grant Nos.10774056 and 10974070)+1 种基金the Fundamental Research Funds for the Central Universities,China (Grant No.200903371)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No.20100061110045)
文摘A train of three equally spaced femtosecond laser pulses is employed to control the photoionization/photodissociation processes of cyclopentanone. With the increase of pulse separation, a strong modulation of product ion yield is observed. More than ten-fold changes of ion yield ratio between different products can be realized. The experimental observations further explain the compositions and formation pathways of peaks in the mass spectra. The controlling mechanisms are also discussed.
文摘This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the frequency- resolved optical gating (FROG) technique. With the theoretical simulation, it concludes that the quality of the generated output array is relevant to the number of pixels and the spacing between the components.
文摘The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 × 10^16W/cm^2 laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.
基金supported by National Natural Science Foundation of China(Nos.10925421,10735050,10974250,10935002)
文摘Irradiated by femtosecond laser pulses with different energies, opened cone targets behave very differently in the transmission of incident laser pulses. The targets, each with an opening angle of 71° and an opening of 5 μm, are fabricated using standard semiconductor technology. When the incident laser energy is low and no pre-plasma is generated on the side walls of the cones, the cone target acts like an optical device to reflect the laser pulse, and 15% of the laser energy can be transmitted through the cones. In contrast, when the incident laser energy is high enough to generate pre-plasmas by the pre-pulse of the main pulse that fills the inner cone, the cone with the plasmas will block the transmission of the laser, which leads to a decrease in laser transmission compared with the low-energy case with no plasma. Simulation results using optical software in the low-energy case, and using the particle-in-cell code in the high-energy case, are primarily in agreement with the experimental results.
基金supported by the Belarusian state program for scientific investigations“Convergence”(Grant No.N2.2.02)。
文摘This review considers the fundamental dynamical processes of metal nanoparticles during and after the impact of a femtosecond laser pulse on a nanoparticle,including the absorption of photons.Understanding the sequence of events after photon absorption and their timescales is important for many applications of nanoparticles.Various processes are discussed,starting with optical absorption by electrons,proceeding through the relaxation of the electrons due to electron–electron scattering and electron–phonon coupling,and ending with the dissipation of the nanoparticle energy into the environment.The goal is to consider the timescales,values,and temperature dependences of the electron heat capacity and the electron–phonon coupling parameter that describe these processes and how these dependences affect the electron energy relaxation.Two-and four-temperature models for describing electron–phonon relaxation are discussed.Significant emphasis is paid to the proposed analytical approach to modeling processes during the action of a femtosecond laser pulse on a metal nanoparticle.These consider the temperature dependences of the electron heat capacity and the electron–phonon coupling factor of the metal.The entire process is divided into four stages:(1)the heating of the electron system by a pulse,(2)electron thermalization,(3)electron–phonon energy exchange and the equalization of the temperature of the electrons with the lattice,and(4)cooling of the nanoparticle.There is an appropriate analytical description of each stage.The four-temperature model can estimate the parameters of the laser and nanoparticles needed for applications of femtosecond laser pulses and nanoparticles.
基金Project supported by the National Natural Science Foundation of China(Grant No.61805274)the Major Program of the National Natural Science Foundation of China(Grant No.12034020)Research Foundation of Inner Mongolia University of China(Grant No.21200-5215108)。
文摘We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber(NL-PCF),the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm.In experiment,by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses,femtosecond laser with tuning range of 900-1290 nm is realized.The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50502028 and 50336040) and the China Postdoctoral Science Foundation (Grant No 2004036139).
文摘This paper reports on the photol spectra of ZnSe single crystal with trace chlorine excited by the femtosecond laser pulse. Three emission bands, including second-harmonic-generation, two-photon-excited peak and a broad band at 500-700nm, were detected. The thermal strain induced by femtosecond pulse strongly influences the photoluminescence of ZnSe crystal. The corresponding strain ~ in ZnSe crystal is estimated to be about 8.8× 10^-3 at room temperature. The zinc-vacancy, as the main point defect induced by femtosecond pulse, is successfully used to interpret the broad emission at 500-700nm. The research shows that self-activated luminescence possesses the recombination mechanism of donor-vacancy pair, and it is also influenced by a few selenium defects and the temperature. The rapid decrease in photol intensity of two-photon-excited fluorescence and second-harmonic generation emission at lower temperature is attributed to the fact that more point defects result in the thermal activation of the two-photo-absorption energy converting to the stronger recombination emission of chlorine-zinc vacancy in 500-700nm. The experimental results indicate that the femtosecond exciting photoluminescence shows a completely different emission mechanism to that of He-Cd exciting luminescence in ZnSe single crystal. The femtosecond laser exhibits a higher sensitive to the impurity in crystal materials, which can be recommended as an efficient way to estimate the trace impurity in high quality crystals.
基金support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11674124)Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC)Fundamental Research Project of Chinese State Key Laboratory of Laser Interaction with Matter (Grant No. SKLLIM1605)
文摘In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11004111 and 61137001)the Natural Science Foundation of Tianjin City,China (Grant No. 10JCZDGX35100)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100031120034)the Fundamental Research Funds for the Central Universities of China
文摘A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the correspond- ing time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal structures of femtosecond laser pulses, normally not observable by the ordinary intensity autocorrelator, can be detected through intuitively analyz- ing the ultrafast evolution process of the air plasma induced by the femtosecond laser pulses under examination. With this method, existence of pre- and post-pulses has been clearly unveiled within the time window of 4-150 fs in reference with the main 50-fs laser pulses output from a commercial 1-kHz femtosecond laser amplifier. The unique advantage of the proposed method is that it can directly provide valuable information about the pulse temporal structures' effect on the laser-induced ionization or material ablation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10675014)
文摘The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting comb-like structures. These structures result from the quantum interferences between photoelectron wave packets generated at different times. The width and the localization of each peak as well as the number of peaks are determined by all the laser and x-ray parameters. Most of peak heights of the PES are higher than the classical predictions.
基金supported by the National Basic Research Program of China(No.2013CB922200)the China Postdoctoral Science Foundation(No.2014M551169)National Natural Science Foundation of China(Nos.11674128,11474129 and 11504129)
文摘In this paper, we present a study on the effect of inter-pulse delay using femtosecond double-pulse laser-induced breakdown spectroscopy in a collinear geometry. The temporal evolution of spectral intensity is performed for the lines of Fe I 423.60 nm, Fe I 425.08 nm and Fe I 427.18 nm. It is found that, by selecting appropriate inter-pulse delay, the signal enhancement can be significantly increased compared with the single-pulse case. A three-fold enhancement in the current experiment is obtained. The plasma temperature and electron density are also investigated based on the theory of Boltzmann plot and Stark broadening. We attribute the main mechanism for emission enhancement to the plasma re-heating effect.
基金Project supported by the National Natural Science Foundation of China (Grant No 10375022) and the Education Department of Hunan Province (Grant No 05C414).
文摘We solve the generalized nonlinear Schr6dinger equation describing the propagation of femtosecond pulses in a nonlinear optical fibre with higher-order dispersions by using the direct approach to perturbation for bright solitons, and discuss the combined effects of the third- and fourth-order dispersions on velocity, temporal intensity distribution and peak intensity of femtosecond pulses. It is noticeable that the combined effects of the third- and fourth-order dispersions on an initial propagated soliton can partially compensate each other, which seems to be significant for the stability controlling of soliton propagation features.
基金supported by National Basic Research Program of China (Grant No 2006CB806003)the Natural Science Foundation of Shandong Province,China (Grant No Y2006A21)+1 种基金the National Natural Science Foundation of China (Grant No 10675076)State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,China
文摘The population transfer in a ladder-type atomic system driven by linearly polarized sech-shape femtosecond laser pulses is investigated by numerically solving Schr6dinger equation without including the rotating wave approximation (RWA). It is shown that population transfer is mainly determined by the Rabi frequency (strength) of the driving laser field and the chirp rate, and that the ratio of the dipole moments and the pulse width also have a prominent effect on the population transfer. By choosing appropriate values of the above parameters, complete population transfer can be realized.
基金supported by the National Natural Science Foundation of China (Grant No. 60978014)the Natural Science Foundation of Jilin Province (Grant No. 20090523)the Educational Commission of Jilin Province (Grant No. [2008]297)
文摘Thermal characteristics of tightly-contacted copper-gold double-layer thin film target under ablation of femtosec- ond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation shows that electron heat flux varies significantly on the boundary of copper-gold film with different maximal electron temperature of 1.15 x 103 K at 5 ps after ablating laser pulse in gold and copper films, which can reach a balance around 12.6 ps and 8.2 ps for a single and double pulse ablation, respectively, and in the meantime, the lattice temperature difference crossing the gold-copper interface is only about 0.04×103 K at the same time scale. It is also found that electron-lattice heat relaxation time increases linearly with laser fluence in both single and double pulse ablation, and a sudden change of the relaxation time appears after the laser energy density exceeds the ablation threshold.