The transformer is the key circuit component of the common-mode noise current when an isolated converter is working.The highfrequency characteristics of the transformer have an important influence on the common-mode n...The transformer is the key circuit component of the common-mode noise current when an isolated converter is working.The highfrequency characteristics of the transformer have an important influence on the common-mode noise of the converter.Traditionally,the measurement method is used for transformer modeling,and a single lumped device is used to establish the transformer model,which cannot be predicted in the transformer design stage.Based on the transformer common-mode noise transmission mechanism,this paper derives the transformer common-mode equivalent capacitance under ideal conditions.According to the principle of experimental measurement of the network analyzer,the electromagnetic field finite element simulation software three-dimensional(3D)modeling and simulation method is used to obtain the two-port parameters of the transformer,extract the high-frequency parameters of the transformer,and establish its electromagnetic compatibility equivalent circuit model.Finally,an experimental prototype is used to verify the correctness of the model by comparing the experimental measurement results with the simulation prediction results.展开更多
Output voltage is an important performance characteristic of planar insulating core transformer (PICT).In PICT magnetic cores are insulated from their neighboring magnetic cores by solid insulating materials.Solid ins...Output voltage is an important performance characteristic of planar insulating core transformer (PICT).In PICT magnetic cores are insulated from their neighboring magnetic cores by solid insulating materials.Solid insulating materials can increase leakage flux.This results in a low generated voltage in secondary coils,especially on the upper stages.Connecting flux compensation capacitors to secondary coils can compensate the flux loss.Design equations to calculate the flux compensation capacitors value and relevant simulation by CST and Protel software were presented.Simulation results of an actual PICT showed that output voltage increased by 19% after being connected to flux compensation capacitors and the voltage on every stage was equally distributed.Results of simulation were consistent with the following experimental test,which revealed that flux compensation capacitors were effective.展开更多
We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on L...We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on Lax pair obtained by us,we derive the infinitely-many conservation laws.We give the bright one-,two-,and N-soliton solutions,and the first-,second-,and Nth-order breather solutions based on the N-fold DT.We conclude that the velocities of the bright solitons are influenced by the distributed gain function,g(z),and variable coefficients in equation,h1(z),p1(z),r1(z),and s1(z)via the asymptotic analysis,where z represents the propagation variable or spatial coordinate.We also graphically observe that:the velocities of the first-and second-order breathers will be affected by h1(z),p1(z),r1(z),and s1(z),and the background wave depends on g(z).展开更多
A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and ...A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and preliminary experimental results in self-designed PICT apparatus are presented. Emphatically, magnetic leakage flux(MFL) giving rise to the output voltage drop is analyzed in detail both theoretically and by finite element method(FEM). Showing good consistency with experimental result, FEM simulation is considered to be practicable in physical design of PICT. To cancel out leakage inductance and improve the voltage uniformity,compensation capacitor is adopted and experimental verification is also presented. All shows satisfactory results.展开更多
The transformation process of an m-DOF free-floating robot from one staticstate to a different static state has m degrees of freedom. The proposed approach of thesetransformations utilizes a series of single-DOF trans...The transformation process of an m-DOF free-floating robot from one staticstate to a different static state has m degrees of freedom. The proposed approach of thesetransformations utilizes a series of single-DOF transformation processes as an alternative to them-DOF transformation process. Two static state transformation processes are studied in detail.First, a single-DOF transformation process is established using a newly defined concept, referred toas transformation planning, and the definite integral of conservation of angular momentum. Second,the governing equation of the single-DOF transformation process is established using the dynamicequations of motion of the robot. This allows the joint torques to be computed to effect the statetransformation. Finally, an extension of the single-DOF transformation process is proposed to extendthe application of this proposed transformation methodology to create a transformation net whichallows the reconfiguration of a robot from one state to many other possible states.展开更多
Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an induct...Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an inductor-capacitor-inductor(LCL)T-circuit.However,capacitors are susceptible to wear-out mechanisms and failure modes.Nevertheless,the necessity for monitoring and regular replacement adds to an elevated cost of ownership for such systems.The utilization of an active output power filter can be used to diminish the dimensions of the LC filter and the electrolytic dc-link capacitor,even though the inclusion of capacitors remains an indispensable part of the system.This paper introduces capacitorless solid-state power filter(SSPF)for single-phase dc-ac converters.The proposed configuration is capable of generating a sinusoidal ac voltage without relying on capacitors.The proposed filter,composed of a planar transformer and an H-bridge converter operating at high frequency,injects voltage harmonics to attain a sinusoidal output voltage.The design parameters of the planar transformer are incorporated,and the impact of magnetizing and leakage inductances on the operation of the SSPF is illustrated.Theoretical analysis,supported by simulation and experimental results,are provided for a design example for a single-phase system.The total harmonic distortion observed in the output voltage is well below the IEEE 519 standard.The system operation is experimentally tested under both steady-state and dynamic conditions.A comparison with existing technology is presented,demonstrating that the proposed topology reduces the passive components used for filtering.展开更多
文摘The transformer is the key circuit component of the common-mode noise current when an isolated converter is working.The highfrequency characteristics of the transformer have an important influence on the common-mode noise of the converter.Traditionally,the measurement method is used for transformer modeling,and a single lumped device is used to establish the transformer model,which cannot be predicted in the transformer design stage.Based on the transformer common-mode noise transmission mechanism,this paper derives the transformer common-mode equivalent capacitance under ideal conditions.According to the principle of experimental measurement of the network analyzer,the electromagnetic field finite element simulation software three-dimensional(3D)modeling and simulation method is used to obtain the two-port parameters of the transformer,extract the high-frequency parameters of the transformer,and establish its electromagnetic compatibility equivalent circuit model.Finally,an experimental prototype is used to verify the correctness of the model by comparing the experimental measurement results with the simulation prediction results.
文摘Output voltage is an important performance characteristic of planar insulating core transformer (PICT).In PICT magnetic cores are insulated from their neighboring magnetic cores by solid insulating materials.Solid insulating materials can increase leakage flux.This results in a low generated voltage in secondary coils,especially on the upper stages.Connecting flux compensation capacitors to secondary coils can compensate the flux loss.Design equations to calculate the flux compensation capacitors value and relevant simulation by CST and Protel software were presented.Simulation results of an actual PICT showed that output voltage increased by 19% after being connected to flux compensation capacitors and the voltage on every stage was equally distributed.Results of simulation were consistent with the following experimental test,which revealed that flux compensation capacitors were effective.
基金Project supported by the the Fundamental Research Funds for the Central Universities(Grant No.2023MS163).
文摘We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on Lax pair obtained by us,we derive the infinitely-many conservation laws.We give the bright one-,two-,and N-soliton solutions,and the first-,second-,and Nth-order breather solutions based on the N-fold DT.We conclude that the velocities of the bright solitons are influenced by the distributed gain function,g(z),and variable coefficients in equation,h1(z),p1(z),r1(z),and s1(z)via the asymptotic analysis,where z represents the propagation variable or spatial coordinate.We also graphically observe that:the velocities of the first-and second-order breathers will be affected by h1(z),p1(z),r1(z),and s1(z),and the background wave depends on g(z).
基金Supported by the Science and Technology Commission of Shanghai Municipality under Grant No.12ZR1436500the Knowledge Innovation Programm of the Chinese Academy of Sciences
文摘A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and preliminary experimental results in self-designed PICT apparatus are presented. Emphatically, magnetic leakage flux(MFL) giving rise to the output voltage drop is analyzed in detail both theoretically and by finite element method(FEM). Showing good consistency with experimental result, FEM simulation is considered to be practicable in physical design of PICT. To cancel out leakage inductance and improve the voltage uniformity,compensation capacitor is adopted and experimental verification is also presented. All shows satisfactory results.
文摘The transformation process of an m-DOF free-floating robot from one staticstate to a different static state has m degrees of freedom. The proposed approach of thesetransformations utilizes a series of single-DOF transformation processes as an alternative to them-DOF transformation process. Two static state transformation processes are studied in detail.First, a single-DOF transformation process is established using a newly defined concept, referred toas transformation planning, and the definite integral of conservation of angular momentum. Second,the governing equation of the single-DOF transformation process is established using the dynamicequations of motion of the robot. This allows the joint torques to be computed to effect the statetransformation. Finally, an extension of the single-DOF transformation process is proposed to extendthe application of this proposed transformation methodology to create a transformation net whichallows the reconfiguration of a robot from one state to many other possible states.
文摘Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an inductor-capacitor-inductor(LCL)T-circuit.However,capacitors are susceptible to wear-out mechanisms and failure modes.Nevertheless,the necessity for monitoring and regular replacement adds to an elevated cost of ownership for such systems.The utilization of an active output power filter can be used to diminish the dimensions of the LC filter and the electrolytic dc-link capacitor,even though the inclusion of capacitors remains an indispensable part of the system.This paper introduces capacitorless solid-state power filter(SSPF)for single-phase dc-ac converters.The proposed configuration is capable of generating a sinusoidal ac voltage without relying on capacitors.The proposed filter,composed of a planar transformer and an H-bridge converter operating at high frequency,injects voltage harmonics to attain a sinusoidal output voltage.The design parameters of the planar transformer are incorporated,and the impact of magnetizing and leakage inductances on the operation of the SSPF is illustrated.Theoretical analysis,supported by simulation and experimental results,are provided for a design example for a single-phase system.The total harmonic distortion observed in the output voltage is well below the IEEE 519 standard.The system operation is experimentally tested under both steady-state and dynamic conditions.A comparison with existing technology is presented,demonstrating that the proposed topology reduces the passive components used for filtering.