High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate a...High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.展开更多
The high-pressure electro-pneumatic servo valve(HESV)is a core element of the high-pressure pneumatic servo system.The annular clearance and the rounded corner of the spool-sleeve can cause the leakage at null positio...The high-pressure electro-pneumatic servo valve(HESV)is a core element of the high-pressure pneumatic servo system.The annular clearance and the rounded corner of the spool-sleeve can cause the leakage at null position,thereby affecting high-precision control and stability of the servo system.This paper investigates the effects of the clearance structure on leakage behavior at null position of the HESV.A numerical approach was employed to evaluate the effects,and then a mathematical model was established to obtain the variation law of leakage flow rate at null position.The results indicate that the leakage flow rate at null position varies linearly with supply pressure and rounded corner radius,and is nonlinear as a quadratic concave function with annular clearance.The leakage flow rate of the annular clearance and the rounded corner varies with the valve opening in an invariable−nonlinear−linear trend.A test rig system of leakage behavior at null position of the HESV was built to confirm the validity of the numerical model,which agrees well with the conducted experimental study.展开更多
To improve energy density,the transportation,storage,and operations of hydrogen,methane,and compressed air vehicles currently require high-pressure compression.High-pressure solenoid valve becomes the vital element to...To improve energy density,the transportation,storage,and operations of hydrogen,methane,and compressed air vehicles currently require high-pressure compression.High-pressure solenoid valve becomes the vital element to above system.In order to reduce leakage and aerodynamic force influence,a new type high-pressure solenoid valve was proposed.The simulation model which included electromagnetic model,aerodynamic force model was established by means of the nonlinear mathematic models.Using the software MATLAB/Simulink for simulation,the dynamic response characteristics of high-pressure pneumatic solenoid valve were obtained under different pulse width modulation(PWM)input control signals.Results show that,first of all,the new type of high-pressure solenoid valve can meet the switch requirement.Secondly,the opening movement and closing movement of the spool lags the PWM rising signal,and the coil current fluctuates significantly during the movement of the spool.Lastly,on/off status of high-pressure valve cannot be represented by the duty cycle.This research can be referred in the design of the high-pressure solenoid valve..展开更多
特高压(ultra high voltage,UHV)换流站阀厅的金属屋面系统在风荷载作用下易发生屋面表层风揭事故。为深入探讨该类建筑屋面的风压极值特性,基于风洞试验分别探讨了大气边界层(atmospheric-boundary-layer,ABL)风、壁面射流、均匀湍流...特高压(ultra high voltage,UHV)换流站阀厅的金属屋面系统在风荷载作用下易发生屋面表层风揭事故。为深入探讨该类建筑屋面的风压极值特性,基于风洞试验分别探讨了大气边界层(atmospheric-boundary-layer,ABL)风、壁面射流、均匀湍流三种风场作用下的屋面风压特性,比较了平均风剖面、风速、风向、湍流强度等因素对屋面风压的影响。结果表明:阀厅屋盖迎风前缘负风压最大,且控制风向角在45°左右;壁面射流风场下平均风压系数与脉动风压系数均超过大气边界层风场的结果;风速对阀厅屋盖的负风压系数均值和极值影响较小,而湍流度对风压系数的极值影响较大;大气边界风场时,JGJ/T 481—2019《屋盖结构风荷载标准》的最不利风压系数建议值偏于安全;而在壁面射流风场下,阀厅屋盖全风向最不利风压系数在所有区域都大于JGJ/T 481—2019的建议值,设计中应加以重视。展开更多
The charge valve is an important element in the charging port of a high-pressure hydrogen storage cylinder(HP-HSC).It is normally closed after the HP-HSC is filled with hydrogen.If the seal of the charge valve is dama...The charge valve is an important element in the charging port of a high-pressure hydrogen storage cylinder(HP-HSC).It is normally closed after the HP-HSC is filled with hydrogen.If the seal of the charge valve is damaged,it will seriously affect the stable operation of the hydrogen supply system and may even cause safety problems.Therefore,the seal performance of the charge valve is important.In this paper,finite element analysis(FEA)is carried out to analyze the seal contact performance of hydrogenated nitrile rubber(HNBR)gaskets in the seal pair of a charge valve.The effects of different pre-compressions,seal widths,and hydrogen pressures on the seal contact performance of the charge valve are analyzed.The contact pressure on the seal surface increases with the increase of pre-compression.With a pre-compression of 2.5 mm,the maximum contact pressure without and with hydrogen pressure are 68.51 and 107.38 MPa,respectively.A contact gap appears in the inner ring of the seal surface with pre-compression below 0.15 mm.The contact gap occurs between the entire seal surface with a seal width of1 mm.The contact pressure on the seal surface and the width of the separation area between the seal surfaces increase with the increase of the seal width.The contact gap between the seal surfaces is zero with a width of 2.5 mm.The width of the separation area between the seal surfaces decreases with the decrease of the hydrogen pressure.The width of the separation area is reduced from 0.5 mm at 35 MPa to 0.17 mm at 15 MPa.This work can be useful for improvement of the seal performance and of the design of the charge valve used in the HP-HSC.展开更多
文摘High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.
基金Project(51705164)supported by the National Natural Science Foundation of China。
文摘The high-pressure electro-pneumatic servo valve(HESV)is a core element of the high-pressure pneumatic servo system.The annular clearance and the rounded corner of the spool-sleeve can cause the leakage at null position,thereby affecting high-precision control and stability of the servo system.This paper investigates the effects of the clearance structure on leakage behavior at null position of the HESV.A numerical approach was employed to evaluate the effects,and then a mathematical model was established to obtain the variation law of leakage flow rate at null position.The results indicate that the leakage flow rate at null position varies linearly with supply pressure and rounded corner radius,and is nonlinear as a quadratic concave function with annular clearance.The leakage flow rate of the annular clearance and the rounded corner varies with the valve opening in an invariable−nonlinear−linear trend.A test rig system of leakage behavior at null position of the HESV was built to confirm the validity of the numerical model,which agrees well with the conducted experimental study.
基金The research work presented in this paper is financially supported by a grant(NJZZ18139)from the scientific research project of Universities in Inner Mongoliaa grant(2018BS05003)from the Natural Science Foundation of Inner Mongoliaa grant(2017QDL-B07)from Inner Mongolia University of Science and Technology Innovation Fund Project.
文摘To improve energy density,the transportation,storage,and operations of hydrogen,methane,and compressed air vehicles currently require high-pressure compression.High-pressure solenoid valve becomes the vital element to above system.In order to reduce leakage and aerodynamic force influence,a new type high-pressure solenoid valve was proposed.The simulation model which included electromagnetic model,aerodynamic force model was established by means of the nonlinear mathematic models.Using the software MATLAB/Simulink for simulation,the dynamic response characteristics of high-pressure pneumatic solenoid valve were obtained under different pulse width modulation(PWM)input control signals.Results show that,first of all,the new type of high-pressure solenoid valve can meet the switch requirement.Secondly,the opening movement and closing movement of the spool lags the PWM rising signal,and the coil current fluctuates significantly during the movement of the spool.Lastly,on/off status of high-pressure valve cannot be represented by the duty cycle.This research can be referred in the design of the high-pressure solenoid valve..
文摘特高压(ultra high voltage,UHV)换流站阀厅的金属屋面系统在风荷载作用下易发生屋面表层风揭事故。为深入探讨该类建筑屋面的风压极值特性,基于风洞试验分别探讨了大气边界层(atmospheric-boundary-layer,ABL)风、壁面射流、均匀湍流三种风场作用下的屋面风压特性,比较了平均风剖面、风速、风向、湍流强度等因素对屋面风压的影响。结果表明:阀厅屋盖迎风前缘负风压最大,且控制风向角在45°左右;壁面射流风场下平均风压系数与脉动风压系数均超过大气边界层风场的结果;风速对阀厅屋盖的负风压系数均值和极值影响较小,而湍流度对风压系数的极值影响较大;大气边界风场时,JGJ/T 481—2019《屋盖结构风荷载标准》的最不利风压系数建议值偏于安全;而在壁面射流风场下,阀厅屋盖全风向最不利风压系数在所有区域都大于JGJ/T 481—2019的建议值,设计中应加以重视。
基金supported by the National Natural Science Foundation of China(No.52175067)the Science and Technology Department of Zhejiang Province(No.2021C01021),Chinathe Young Elite Scientist Sponsorship Program by China Association for Science and Technology(No.YESS20200154)。
文摘The charge valve is an important element in the charging port of a high-pressure hydrogen storage cylinder(HP-HSC).It is normally closed after the HP-HSC is filled with hydrogen.If the seal of the charge valve is damaged,it will seriously affect the stable operation of the hydrogen supply system and may even cause safety problems.Therefore,the seal performance of the charge valve is important.In this paper,finite element analysis(FEA)is carried out to analyze the seal contact performance of hydrogenated nitrile rubber(HNBR)gaskets in the seal pair of a charge valve.The effects of different pre-compressions,seal widths,and hydrogen pressures on the seal contact performance of the charge valve are analyzed.The contact pressure on the seal surface increases with the increase of pre-compression.With a pre-compression of 2.5 mm,the maximum contact pressure without and with hydrogen pressure are 68.51 and 107.38 MPa,respectively.A contact gap appears in the inner ring of the seal surface with pre-compression below 0.15 mm.The contact gap occurs between the entire seal surface with a seal width of1 mm.The contact pressure on the seal surface and the width of the separation area between the seal surfaces increase with the increase of the seal width.The contact gap between the seal surfaces is zero with a width of 2.5 mm.The width of the separation area between the seal surfaces decreases with the decrease of the hydrogen pressure.The width of the separation area is reduced from 0.5 mm at 35 MPa to 0.17 mm at 15 MPa.This work can be useful for improvement of the seal performance and of the design of the charge valve used in the HP-HSC.