A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system i...China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.展开更多
Cloud cavitation shows an unsteady periodic tendency under a certain flow condition. In a cavitating water jet flow with cavitation clouds, the cavities or the clouds produce high impact at their collapse. In order to...Cloud cavitation shows an unsteady periodic tendency under a certain flow condition. In a cavitating water jet flow with cavitation clouds, the cavities or the clouds produce high impact at their collapse. In order to make clear a mechanism of the periodic cavity behavior, we experimentally examine the behavior in a transparent cylindrical convergent-divergent nozzle using a high-speed video camera. An effect of upstream pressure fluctuation due to a plunger pump is investigated from a viewpoint of unsteady behavior in a cavitating water jet. As a result, it is found that the cavitating flow has two kinds of oscillation patterns in the cavity length (cavitation cloud region). One is due to the upstream pressure fluctuation caused by the plunger pump. The other is much shorter periodic motion related to the characteristic oscillation of cavitation clouds accompanied with the shrinking (reentrant), growing and shedding motion of the clouds.展开更多
A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible flu...A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.展开更多
At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet veloci...At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.展开更多
The behavior of cavitation cloud shedding in submerged water jets issuing from a sheathed pipe nozzle is investigated experimentally by high-speed camera visualization observation. Experiments are carried out under di...The behavior of cavitation cloud shedding in submerged water jets issuing from a sheathed pipe nozzle is investigated experimentally by high-speed camera visualization observation. Experiments are carried out under different cavitation numbers decreased to 0.01 with increase of the injection pressure, and the frequency spectrum of cavitation cloud shedding is evaluated by statistical analysis of a sequence of high-speed camera images. Experiments demonstrate that cavitation clouds appear when the cavitation number σ decreases to the level of 0.5-0.7 and developed cavitation clouds shed downstream periodically at multiple frequencies. The low frequency components of cavitation cloud shedding is basically dependent upon the pressure pulsation of plunger pump, which is often employed in various industry application of water jets. However, the high frequency components are closely related to the shedding of vortexes and the collapsing of cavitation clouds, which are dependent on the flow structure of submerged jets and the property of cavitation clouds consisted of numerous bubbles.展开更多
Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied throug...Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.展开更多
We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with c...We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with cavitation abrasive water jet was calculated,in order to estimate its efficiency of energy consumption. The particle size distribution and the specific surface area were measured by applying a JEM-200CX transmission electron microscope and an Autosorb-1 automatic surface area analyzer. The study results show that the efficiency of energy consumed in creating new surface areas is as high as 2.92%,or 4.94% with the aid of cavitation in the comminution of mica powder. This efficiency will decrease with an increase in the number of comminutions. After three comminutions,the efficien-cies will become 1.91% and 2.29% for comminution without cavitation and with cavitation,respectively. The abrasive water jet technology is an effective way for comminution of mica powder.展开更多
The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets ...The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets combined with H2O2 as demonstrated in laboratory tests.Various factors affecting phenol removal ratio were ex-amined and the degradation mechanism was revealed by high performance liquid chromatography(HPLC).The re-sults showed that 99.85% of phenol was mineralized when phenol concentration was 100 mg·L-1 with pH value of 3.0,H2O2 concentration of 300 mg·L-1,confining pressure of 0.5 MPa,and pumping pressure of 20 MPa.The in-termediate products after phenol oxidation were composed of catechol,hydroquinone and p-benzoquinone.Finally,phenol was degraded into maleic acid and acetic acid.Furthermore,a dynamic model of phenol oxidation via cavi-tation water jets combined with H2O2 has been developed.展开更多
To assess the impingement capability of water jet, submerged water jet discharged from a centralbody nozzle is investigated. Efforts are devoted to both the wavy jet edge and the cavitation phenomenon involved. Three ...To assess the impingement capability of water jet, submerged water jet discharged from a centralbody nozzle is investigated. Efforts are devoted to both the wavy jet edge and the cavitation phenomenon involved. Three configurations of the central body are examined and jet pressure is fixed at 15 MPa. Jet edge is visualized using high speed photography. Numerical simulation is performed to extract flow parameter distributions in the jet stream and to predict cavity profiles. Furthermore, an impingement experiment with target sandstone samples is conducted as well. The results indicate that both lateral fluctuation amplitude and frequency of the jet stream vary with axial position of the central body. Cavitation tongues of different stream wise dimensions are manifested in the wake flows downstream of the central body. In case of the downstream end of the central body parallel with nozzle outlet section, the largest stream wise dimension of cavitation zone is obtained. Relative to the round nozzle with the same equivalent outlet diameter, the central-body nozzle yields preferable impinging effect.展开更多
The comminution of mica with an abrasive water jet is mainly based on three knids of effects, that is, high-speed collision, cavitating effect and shearing effect. Cavitation abrasive water jet was applied for the com...The comminution of mica with an abrasive water jet is mainly based on three knids of effects, that is, high-speed collision, cavitating effect and shearing effect. Cavitation abrasive water jet was applied for the comminution of mica because cavitation abrasive water jet can make full use of the three effects mentioned above. Besides high speed impacting among particles,cavitation and shearing were also enhanced due to the divergent angle at the outlet of the cavitation nozzle.A JME-200CX transmission electron microscope was used for observing the size distribution of particles.Variance analysis on the experimental results indicates that the effect of cavitation is much more significant than that of collision.The effect of pressure on comminution results becomes less with the decrease of the particle size.展开更多
To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-...To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-εturbulence model combined with the full-cavitation model.The structure of cavitation flow field and the hydrodynamic performance of hydrofoil were analyzed at the cavitation number of 0.85,0.70,0.55,respectively.The results show that barriered by the jet,the momentum of the reentrant jet was reduced;The development of cavitation and the strength of cavity shedding were weakened to some extent.Cavitation suppression effect was very obvious in the cavitation conditions with the cavitation number of 0.7 and above when the injection position was at 37% chord length from the hydrofoil leading edge and the jet-flow ratio kept 0.3.Time-averaged lift and drag coefficient were reduced,and the lift-drag ratio increased in water injection conditions.展开更多
This paper reviews recent progress made toward modeling of cavitation and numerical simulation of cavitating water jets. Properties of existing cavitation models are discussed and a compressible mixture flow method fo...This paper reviews recent progress made toward modeling of cavitation and numerical simulation of cavitating water jets. Properties of existing cavitation models are discussed and a compressible mixture flow method for the numerical simulation of high- speed water jets accompanied by intensive cavitation is introduced. Two-phase fluids media of cavitating flow are treated as a homo- geneous bubbly mixture and the mean flow is computed by solving Reynolds-Averaged Navier-Stokes (RANS) equations for com- pressible fluid. The intensity of cavitation is evaluated by the gas volume fraction, which is governed by the compressibility of bubble-liquid mixture corresponding to the status of mean flow field. Numerical results of cavitating water jet issuing from an orifice nozzle are presented and its applicability to intensively cavitating jets is demonstrated. However, the effect of impact pressure caused by collapsing of bubbles is neglected, and effectively coupling of the present compressible mixture flow method with the dynamics of bubbles remains to be a challenge.展开更多
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
基金Project(2020YFF0426370) supported by the National Key Research and Development Program of ChinaProject(SF-202010) supported by the Water Conservancy Technology Demonstration,China。
文摘China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.
文摘Cloud cavitation shows an unsteady periodic tendency under a certain flow condition. In a cavitating water jet flow with cavitation clouds, the cavities or the clouds produce high impact at their collapse. In order to make clear a mechanism of the periodic cavity behavior, we experimentally examine the behavior in a transparent cylindrical convergent-divergent nozzle using a high-speed video camera. An effect of upstream pressure fluctuation due to a plunger pump is investigated from a viewpoint of unsteady behavior in a cavitating water jet. As a result, it is found that the cavitating flow has two kinds of oscillation patterns in the cavity length (cavitation cloud region). One is due to the upstream pressure fluctuation caused by the plunger pump. The other is much shorter periodic motion related to the characteristic oscillation of cavitation clouds accompanied with the shrinking (reentrant), growing and shedding motion of the clouds.
基金the National Natural Science Foundation of China (No.50074035).
文摘A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.
基金Projects(51205171,51376081)supported by the National Natural Science Foundation of ChinaProject(1201026B)supported by the Postdoctoral Science Foundation of Jiangsu Province,China
文摘At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.
文摘The behavior of cavitation cloud shedding in submerged water jets issuing from a sheathed pipe nozzle is investigated experimentally by high-speed camera visualization observation. Experiments are carried out under different cavitation numbers decreased to 0.01 with increase of the injection pressure, and the frequency spectrum of cavitation cloud shedding is evaluated by statistical analysis of a sequence of high-speed camera images. Experiments demonstrate that cavitation clouds appear when the cavitation number σ decreases to the level of 0.5-0.7 and developed cavitation clouds shed downstream periodically at multiple frequencies. The low frequency components of cavitation cloud shedding is basically dependent upon the pressure pulsation of plunger pump, which is often employed in various industry application of water jets. However, the high frequency components are closely related to the shedding of vortexes and the collapsing of cavitation clouds, which are dependent on the flow structure of submerged jets and the property of cavitation clouds consisted of numerous bubbles.
基金Supported by the National Natural Science Foundation of China(50604019)the Innovation Team Foundation of China(50621403)
文摘Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.
基金The support from both the Research Foundation for Returning Scholars of Chinathe China Postdoctoral Science Foundation
文摘We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with cavitation abrasive water jet was calculated,in order to estimate its efficiency of energy consumption. The particle size distribution and the specific surface area were measured by applying a JEM-200CX transmission electron microscope and an Autosorb-1 automatic surface area analyzer. The study results show that the efficiency of energy consumed in creating new surface areas is as high as 2.92%,or 4.94% with the aid of cavitation in the comminution of mica powder. This efficiency will decrease with an increase in the number of comminutions. After three comminutions,the efficien-cies will become 1.91% and 2.29% for comminution without cavitation and with cavitation,respectively. The abrasive water jet technology is an effective way for comminution of mica powder.
基金Supported by the National Natural Science Foundation of China (50921063,51104191)the Natural Science Foundationof Chongqing (2009BA6047)
文摘The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets combined with H2O2 as demonstrated in laboratory tests.Various factors affecting phenol removal ratio were ex-amined and the degradation mechanism was revealed by high performance liquid chromatography(HPLC).The re-sults showed that 99.85% of phenol was mineralized when phenol concentration was 100 mg·L-1 with pH value of 3.0,H2O2 concentration of 300 mg·L-1,confining pressure of 0.5 MPa,and pumping pressure of 20 MPa.The in-termediate products after phenol oxidation were composed of catechol,hydroquinone and p-benzoquinone.Finally,phenol was degraded into maleic acid and acetic acid.Furthermore,a dynamic model of phenol oxidation via cavi-tation water jets combined with H2O2 has been developed.
文摘To assess the impingement capability of water jet, submerged water jet discharged from a centralbody nozzle is investigated. Efforts are devoted to both the wavy jet edge and the cavitation phenomenon involved. Three configurations of the central body are examined and jet pressure is fixed at 15 MPa. Jet edge is visualized using high speed photography. Numerical simulation is performed to extract flow parameter distributions in the jet stream and to predict cavity profiles. Furthermore, an impingement experiment with target sandstone samples is conducted as well. The results indicate that both lateral fluctuation amplitude and frequency of the jet stream vary with axial position of the central body. Cavitation tongues of different stream wise dimensions are manifested in the wake flows downstream of the central body. In case of the downstream end of the central body parallel with nozzle outlet section, the largest stream wise dimension of cavitation zone is obtained. Relative to the round nozzle with the same equivalent outlet diameter, the central-body nozzle yields preferable impinging effect.
文摘The comminution of mica with an abrasive water jet is mainly based on three knids of effects, that is, high-speed collision, cavitating effect and shearing effect. Cavitation abrasive water jet was applied for the comminution of mica because cavitation abrasive water jet can make full use of the three effects mentioned above. Besides high speed impacting among particles,cavitation and shearing were also enhanced due to the divergent angle at the outlet of the cavitation nozzle.A JME-200CX transmission electron microscope was used for observing the size distribution of particles.Variance analysis on the experimental results indicates that the effect of cavitation is much more significant than that of collision.The effect of pressure on comminution results becomes less with the decrease of the particle size.
基金National Key Basic Research Special Foundation of China(2015CB057301)
文摘To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-εturbulence model combined with the full-cavitation model.The structure of cavitation flow field and the hydrodynamic performance of hydrofoil were analyzed at the cavitation number of 0.85,0.70,0.55,respectively.The results show that barriered by the jet,the momentum of the reentrant jet was reduced;The development of cavitation and the strength of cavity shedding were weakened to some extent.Cavitation suppression effect was very obvious in the cavitation conditions with the cavitation number of 0.7 and above when the injection position was at 37% chord length from the hydrofoil leading edge and the jet-flow ratio kept 0.3.Time-averaged lift and drag coefficient were reduced,and the lift-drag ratio increased in water injection conditions.
基金supported by the Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific Research (C) (Grant No. 22560177)
文摘This paper reviews recent progress made toward modeling of cavitation and numerical simulation of cavitating water jets. Properties of existing cavitation models are discussed and a compressible mixture flow method for the numerical simulation of high- speed water jets accompanied by intensive cavitation is introduced. Two-phase fluids media of cavitating flow are treated as a homo- geneous bubbly mixture and the mean flow is computed by solving Reynolds-Averaged Navier-Stokes (RANS) equations for com- pressible fluid. The intensity of cavitation is evaluated by the gas volume fraction, which is governed by the compressibility of bubble-liquid mixture corresponding to the status of mean flow field. Numerical results of cavitating water jet issuing from an orifice nozzle are presented and its applicability to intensively cavitating jets is demonstrated. However, the effect of impact pressure caused by collapsing of bubbles is neglected, and effectively coupling of the present compressible mixture flow method with the dynamics of bubbles remains to be a challenge.