Pore structure of C/C (Carbon-Carbon) composite after several stages of pitch impregnation under the high pressure and heat treatment was investigated by means of low temperature nitrogen adsorption and the standard...Pore structure of C/C (Carbon-Carbon) composite after several stages of pitch impregnation under the high pressure and heat treatment was investigated by means of low temperature nitrogen adsorption and the standard contact porosimetry. Total pore volume, pore size distribution and specific surface area were calculated for samples of composite after several successive stages of treatment. The radius of pores presented in the material changes from 1 nm to 90 tam. Total pore volume and specific surface area both decrease after successive stages of pitch impregnation under the pressure, whereas heat treatment up to 1,750 ℃ and 2,000 ℃ leads to creation of some porous space and pore volume expansion. The bulk porosity of C/C composite comes down from 33.7% to 13.7% after the serial stages of treatment and the specific surface area is reduced by half compared to the initial material.展开更多
Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitra...Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitrate as active component precursors.The desulfurization performances of hot coal gas on the prepared sorbent at a mid-temperature of 500°C were tested in fixed-bed reactor.Morphology and pore structure of the prepared sorbent were also characterized by TEM,N2adsorption/desorption isotherms and XRD.For comparison,the sorbent of Zn-Mn-Cu/SC prepared by conventional high-pressure impregnation was also evaluated and characterized in order to study the effects of ultrasound treatment.Zn-Mn-Cu/SC(U) sorbent prepared by high-pressure impregnation under ultrasound-assisted condition showed a better desulfurization performance than Zn-Mn-Cu/SC.It could remove H2 S from 1000×10-6m3/m3 to 0.1×10-6m3/m3 at 500°C and maintained for 12.5 h with the sulfur capacity of 7.74%,in which both the breakthrough time and sulfur capacity were about 32% and 51% higher than those of Zn-Mn-Cu/SC sorbent.The introduction of ultrasound during high-pressure impregnation process greatly improved the morphology and pore structure of the sorbent.The ultrasonic treatment made particle size of active components smaller and made them more evenly disperse on semi-coke support,which provided more opportunities to contact with H2S in coal-based gases.However,there were no any difference in compositions and existing forms of active components on the Zn-Mn-Cu/SC and Zn-Mn-Cu/SC(U) sorbents.展开更多
Felt base carbon/carbon composites fabricated by super-high pressure impregnation carbonization process (SPIC) were heat treated at high temperature 2773K. The oxidation properties of felt base carbon/carbon composite...Felt base carbon/carbon composites fabricated by super-high pressure impregnation carbonization process (SPIC) were heat treated at high temperature 2773K. The oxidation properties of felt base carbon/carbon composites were investigated at different temperatures (773-1173K), and the microstructures of carbon/carbon composites were studied by SEM and X-ray diffraction. The experimental results showed that the inter-laminar distance of (002) plane (d002) deceased while the microcrystalline stack height (Lc) increased. The oxidation rate of felt base carbon/carbon composites was invari-able at certain temperatures. The oxidation mechanism of carbon/carbon composites changed remarkably at the oxidation temperature 973K. At the initial oxidation stage of carbon/carbon composites, carbon matrix was oxidized much more rapidly than carbon felt.展开更多
Activated carbons (ACs) were prepared from a lignocellulosic-based waste material by a chemical impregnation method using KOH, NaOH or CaCl2 as the activating agent. These ACs were characterized by different technique...Activated carbons (ACs) were prepared from a lignocellulosic-based waste material by a chemical impregnation method using KOH, NaOH or CaCl2 as the activating agent. These ACs were characterized by different techniques such as N2 adsorption, FTIR, XRD and SEM. Electrostatic properties viz. pH and pHpzc of AC suspensions in aqueous media were measured. The concentration of surface oxygenated functional groups of the ACs was estimated following the Boehm titration method. Cyclic voltammetry was conducted in H2SO4 after fabricating two-electrode capacitor cells of the ACs. The correlation of AC surface chemistry and morphology with electrochemical performance (capacitance) of powdered electrodes is analyzed and discussed.展开更多
The steam-thermal method for refinery of highly-viscous oils and the process of propane-butane liquid extraction have been implemented for production of the impregnation material for carbon rock. The process of steam-...The steam-thermal method for refinery of highly-viscous oils and the process of propane-butane liquid extraction have been implemented for production of the impregnation material for carbon rock. The process of steam-thermal treatment has been carried out for highly-viscous oil from Ashalchinskoye accumulation with the “steam-oil” ratio changing from 1.1:1 to 1.4:1. The extraction process has been carried out at temperature T = 85°C and pressures from 4.5 to 8 MPa. Water absorption of carbonate rock has decreased to 0.34% as a result of SCF-impregnation process.展开更多
Silica-supported CuCo catalysts were prepared by impregnation method with different impregnation sequence for higher alcohols synthesis. These catalysts were characterized by H2-TPR, XRD, N2 adsorption, XPS techniques...Silica-supported CuCo catalysts were prepared by impregnation method with different impregnation sequence for higher alcohols synthesis. These catalysts were characterized by H2-TPR, XRD, N2 adsorption, XPS techniques and CO selective hydrogenation reaction measurement. The effects of impregnation sequence on the structure and performance of catalysts were investigated, and there were important influences on the selectivity to higher alcohols. There was a strong synergistic effect between copper and cobalt for the co-impregnated sample. The CuCo/SiO2 catalyst prepared by co- impregnation showed a better yield of total alcohols, and a higher selectivity to total alcohols which reached 51.5%.展开更多
Water injection for oil displacement is one of the most effective ways to develop fractured-vuggy carbonate reservoirs.With the increase in the number of rounds of water injection,the development effect gradually fail...Water injection for oil displacement is one of the most effective ways to develop fractured-vuggy carbonate reservoirs.With the increase in the number of rounds of water injection,the development effect gradually fails.The emergence of high-pressure capacity expansion and water injection technology allows increased production from old wells.Although high-pressure capacity expansion and water injection technology has been implemented in practice for nearly 10 years in fractured-vuggy reservoirs,its mechanism remains unclear,and the water injection curve is not apparent.In the past,evaluating its effect could only be done by measuring the injection-production volume.In this study,we analyze the mechanism of high-pressure capacity expansion and water injection.We propose a fluid exchange index for high-pressure capacity expansion and water injection and establish a discrete model suitable for high-pressure capacity expansion and water injection curves in fractured-vuggy reservoirs.We propose the following mechanisms:replenishing energy,increasing energy,replacing energy,and releasing energy.The above mechanisms can be identified by the high-pressure capacity expansion and water injection curve of the well HA6X in the Halahatang Oilfield in the Tarim Basin.By solving the basic model,the relative errors of Reservoirs I and II are found to be 1.9%and 1.5%,respectively,and the application of field examples demonstrates that our proposed high-pressure capacity expansion and water injection indicator curve is reasonable and reliable.This research can provide theoretical support for high-pressure capacity expansion and water injection technology in fracture-vuggy carbonate reservoirs.展开更多
High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, resp...High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, respectively. The sorbent preparation process includes high-pressure impregnation, filtration, ovendry and calcination. The aim of this research is to primarily study the effects of the impregnation pressure on physical properties and desulfurization ability of the sorbent. The desulfurization experiment was carried out in a fixed-bed reactor at 500 ~C and a simulated coal gas used in this work was composed of CO (33 vol%), H2 (39 vol%), H2S (300 ppm in volume), and N2 (balance). Experimental results show that the pore structure of the SC support can be improved effectively and ZnO active component can be uniformly dispersed on the support, with the small particle size of 10-500 nm. Sorbents prepared using high-pressure impregnation have better desulfurization capacity and their active components have higher utilization rate. P20-ZnSC sorbent, obtained by high-pressure impregnation at 20 atm, has the best desulfurization ability with a sulfur capacity of 7.54 g S/100g sorbent and a breakthrough time of 44 h. Its desulfurization precision and efficiency of removing H2S from the middle temperature gases can reach 〈 1 ppm and 〉99.7%, respectively, before sorbent breakthrough.展开更多
An efficient technology of impregnation of carbonate crushed stone by oil-product based on SCF-impregnation process usage with propane/butane solvent was developed. Regular impregnation throughout the volume of crushe...An efficient technology of impregnation of carbonate crushed stone by oil-product based on SCF-impregnation process usage with propane/butane solvent was developed. Regular impregnation throughout the volume of crushed stone sample is achieved. As a result of the appliance of proposed technology, the humidity of the treated crushed stone samples decreased down to 0.54%.展开更多
Carbon dioxide (CO2) is the major component of greenhouse gas. Increase in concentration of CO2 in the atmosphere leads to global warming. To remove the CO2 from waste flue gas a four-stage counter-current multistage ...Carbon dioxide (CO2) is the major component of greenhouse gas. Increase in concentration of CO2 in the atmosphere leads to global warming. To remove the CO2 from waste flue gas a four-stage counter-current multistage fluidized bed adsorber was developed and operated in continuous bubbling fluidization regime for the two丒phase system. This paper describes the optimum condition for CO2 removal efficiency in a multistage fluidized bed reactor using amine impregnated activated carbon. Response surface methodology with central composite design was used to determine the effect of three variables on the response. The variables are inlet concentration of CO2 in ppm (ranging from 3000 to 20,000), impregnation ratio of monoethanol amine (ranging from 0.2 to 0.6) and weir height in mm (20-60). The response was CO2 removal efficiency. The factor which was most influential has been identified from the analysis of variance. The optimum CO2 removal efficiency for the amine impregnated activated carbon (MEA-AC) was found to be 95.17%, at initial concentration of CO2 7312.85 ppm, chemical impregnation ratio of 0.31, and weir height 48.65 mm. From the experiment, the CO2 removal efficiency was found to be 95.97% at the same operating conditions. The predicted response was found to relevance with experimental data.展开更多
A general mathematical model with its governing equations in dimensionless forms has beendeveloped to describe the removal of hydrogen sulfide with impregnated activated carbon.Anapproximate relationship between the s...A general mathematical model with its governing equations in dimensionless forms has beendeveloped to describe the removal of hydrogen sulfide with impregnated activated carbon.Anapproximate relationship between the sulfur capacity and the reaction time in a single carbon pellet isobtained,and criterion to ascertain the rate controlling step of the process can then be deduced.Inthe meantime,the choice of the appropriate oxygen concentration and the principle to be followedare also described.展开更多
In this study,ferric nitrate modified carbon nanotube composites (FCNT) were prepared by isovolumetric impregnation using carbon nanotubes (CNTs) as the carrier and ferric nitrates the active agent.The batch experimen...In this study,ferric nitrate modified carbon nanotube composites (FCNT) were prepared by isovolumetric impregnation using carbon nanotubes (CNTs) as the carrier and ferric nitrates the active agent.The batch experiments showed that FCNT could effectively oxidize As(III) to As(V) and react with it to form stable iron arsenate precipitates.When the dosage of FCNT was 0.1 g·L^(–1),pH value was 5–6,reaction temperature was 35℃ and reaction time was 2 h,the best arsenic removal effect could be achieved,and the removal rate of As(V) could reach 99.1%,which was always higher than 90%under acidic conditions.The adsorption results of FCNT were found to be consistent with Langmuir adsorption by static adsorption isotherm fitting,and the maximum adsorption capacity reached 118.3 mg·g^(-1).The material phase and property analysis by scanning electron microscopy,Brunauer–Emmett–Teller,Fourier transform infrared spectoscopy,X-ray photoelectron spectroscopy and other characterization methods,as well as adsorption isotherm modeling,were used to explore the adsorption mechanism of FCNT on arsenic.It was found that FCNT has microporous structure and nanostructure,and iron nanoparticles are loosely distributed on CNTs,which makes the material have good oxidation,adsorption and magnetic separation properties.Arsenic migrates on the surface of FCNT composites is mainly removed by forming insoluble compounds and co-precipitation.All the results show that FCNT treats arsenic at low cost with high adsorption efficiency,and the results also provide the experimental data basis and theoretical basis for arsenic contamination in groundwater.展开更多
With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared...With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared by the one-step activation method, with sunflower straw (SS) used as the raw material and H3PO4 used as the activator. Four types of SSAC were prepared with impregnation ratios (weight of SS to weight of H3PO4) of 1:1, 1:2, 1:3, and 1:5, corresponding to SSAC1, SSAC2, SSAC3, and SSAC4, respectively. The adsorption process of acid fuchsin (AF) in water using the four types of SSAC was studied. The results showed that the impregnation ratio significantly affected the structure of the materials. The increase in the impregnation ratio increased the specific surface area and pore volume of SSAC and improved the adsorption capacity of AF. However, an impregnation ratio that was too large led to a decrease in specific surface area. SSAC3, with an impregnation ratio of 1:3, had the largest specific surface area (1 794.01 m2/g), and SSAC4, with an impregnation ratio of 1:5, exhibited the smallest microporosity (0.052 7 cm3/g) and the largest pore volume (2.549 cm3/g). The adsorption kinetics of AF using the four types of SSAC agreed with the quasi-second-order adsorption kinetic model. The Langmuir isotherm model was suitable to describe SSAC3 and SSAC4, and the Freundlich isotherm model was appropriate to describe SSAC1 and SSAC2. The result of thermodynamics showed that the adsorption process was spontaneous and endothermic. At 303 K, SSAC4 showed a removal rate of 97.73% for 200-mg/L AF with a maximum adsorption capacity of 2 763.36 mg/g, the highest among the four types of SSAC. This study showed that SAAC prepared by the H3PO4-based one-step activation method is a green and efficient carbon material and has significant application potential for the treatment of dye-containing wastewater.展开更多
Results of research of supercritical fluid CO2-impregnation process (the static mode) within a problem of synthesis of the palladium catalyst are given. The kinetics of process is characterized in the pressure range f...Results of research of supercritical fluid CO2-impregnation process (the static mode) within a problem of synthesis of the palladium catalyst are given. The kinetics of process is characterized in the pressure range from 15.0 to 35.0 MPa on temperatures 308.15?K, 313.15?K, 318.15?K, 323.15?K, 328.15?K and 333.15?K. Results of surface assessment and activity measurements of the catalyst samples synthesized by supercritical СO2-impregnation of aluminum oxide suggest competitiveness of the discussed approach in comparison to traditional methods.展开更多
In order to develop a novel controlled-release material, we previously attempted to impregnate poly(L-lactide) (poly(L-LA)), poly(L-LA-ran-CL) (CL: ε-caprolactone) or poly(L-LA-ran-TEMC) (TEMC: tetramethylene carbona...In order to develop a novel controlled-release material, we previously attempted to impregnate poly(L-lactide) (poly(L-LA)), poly(L-LA-ran-CL) (CL: ε-caprolactone) or poly(L-LA-ran-TEMC) (TEMC: tetramethylene carbonate) with low boiling point, organic useful compounds using supercritical carbon dioxide (scCO2) as the solvent. In this work, the factors influencing impregnation of poly (L-LA) random copolymers with useful compounds were investigated under scCO2 using the copolymers previously used. The influence of temperature, pressure, and time on the impregnation contents of the useful compounds on the copolymers was evaluated. The polymer used, which is a base of this material, was poly(L-LA-ran-CL), poly(L-LA-ran-TEMC), or poly(L-LA-ran-DXO) (DXO: 1,5-dioxepan-2-one). Statistical random copolymers of L-LA with CL, TEMC, or DXO were synthesized using Sn(oct)2 as a catalyst at 150°C for 24 h without solvent. Preparation of the controlled-release materials was carried out using essential bark oil from Thujopsis dolabrata var. hondae and synthetic L-LA random copolymers as a base material under scCO2. The impregnation experiment, which investigated the influence of pressure, was conducted in the range of 10 to 20 MPa. The influence of temperature on impregnation was carried out at 40°C to 100°C. Impregnation time was varied from 1 to 5 h. The pressure of essential oil impregnated into poly(L-LA) random copolymers was the highest at 14 MPa. In the influence of temperature on impregnation, the amount of essential oil increased with increasing temperature.展开更多
The activation effect of boric acid as an activator is good,and we investigate the best activation conditions for the boric acid impregnation method.To represent the structural characteristics and adsorption performan...The activation effect of boric acid as an activator is good,and we investigate the best activation conditions for the boric acid impregnation method.To represent the structural characteristics and adsorption performance of the Stellera Chamaejasme based carbon molecular sieves,we use Brunner-Emmet-Teller(BET)measurements,scan-ning electron microscope(SEM),Raman spectra(Raman),X-ray diffraction(XRD),and adsorption property measurement.When the loading ratio was 0.68:1,the specific surface area was 532.21 m^(2)/g,the total pore volume was 0.24 cm 3/g,the average pore size was 1.81 nm,the adsorption value of methylene blue was 145.28 mg/g,and the adsorption value of iodine was 713.33 mg/g,the results showed that boric acid had better activation effect.The carbon molecular sieves made from Stellera Chamaejasme and activated with boric acid produce two peaks on the aperture distribution graph that are densely distributed in the micropore range.This indicates that boric acid’s pore-forming tendency is primarily micropore.展开更多
文摘Pore structure of C/C (Carbon-Carbon) composite after several stages of pitch impregnation under the high pressure and heat treatment was investigated by means of low temperature nitrogen adsorption and the standard contact porosimetry. Total pore volume, pore size distribution and specific surface area were calculated for samples of composite after several successive stages of treatment. The radius of pores presented in the material changes from 1 nm to 90 tam. Total pore volume and specific surface area both decrease after successive stages of pitch impregnation under the pressure, whereas heat treatment up to 1,750 ℃ and 2,000 ℃ leads to creation of some porous space and pore volume expansion. The bulk porosity of C/C composite comes down from 33.7% to 13.7% after the serial stages of treatment and the specific surface area is reduced by half compared to the initial material.
基金supported by the National Basic Research Program of China(2012CB723105)the National Natural Science Foundation of China(20976117)the Technological Innovation Programs of Higher Education Institutions in Shanxi(2013JYT113)
文摘Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitrate as active component precursors.The desulfurization performances of hot coal gas on the prepared sorbent at a mid-temperature of 500°C were tested in fixed-bed reactor.Morphology and pore structure of the prepared sorbent were also characterized by TEM,N2adsorption/desorption isotherms and XRD.For comparison,the sorbent of Zn-Mn-Cu/SC prepared by conventional high-pressure impregnation was also evaluated and characterized in order to study the effects of ultrasound treatment.Zn-Mn-Cu/SC(U) sorbent prepared by high-pressure impregnation under ultrasound-assisted condition showed a better desulfurization performance than Zn-Mn-Cu/SC.It could remove H2 S from 1000×10-6m3/m3 to 0.1×10-6m3/m3 at 500°C and maintained for 12.5 h with the sulfur capacity of 7.74%,in which both the breakthrough time and sulfur capacity were about 32% and 51% higher than those of Zn-Mn-Cu/SC sorbent.The introduction of ultrasound during high-pressure impregnation process greatly improved the morphology and pore structure of the sorbent.The ultrasonic treatment made particle size of active components smaller and made them more evenly disperse on semi-coke support,which provided more opportunities to contact with H2S in coal-based gases.However,there were no any difference in compositions and existing forms of active components on the Zn-Mn-Cu/SC and Zn-Mn-Cu/SC(U) sorbents.
文摘Felt base carbon/carbon composites fabricated by super-high pressure impregnation carbonization process (SPIC) were heat treated at high temperature 2773K. The oxidation properties of felt base carbon/carbon composites were investigated at different temperatures (773-1173K), and the microstructures of carbon/carbon composites were studied by SEM and X-ray diffraction. The experimental results showed that the inter-laminar distance of (002) plane (d002) deceased while the microcrystalline stack height (Lc) increased. The oxidation rate of felt base carbon/carbon composites was invari-able at certain temperatures. The oxidation mechanism of carbon/carbon composites changed remarkably at the oxidation temperature 973K. At the initial oxidation stage of carbon/carbon composites, carbon matrix was oxidized much more rapidly than carbon felt.
文摘Activated carbons (ACs) were prepared from a lignocellulosic-based waste material by a chemical impregnation method using KOH, NaOH or CaCl2 as the activating agent. These ACs were characterized by different techniques such as N2 adsorption, FTIR, XRD and SEM. Electrostatic properties viz. pH and pHpzc of AC suspensions in aqueous media were measured. The concentration of surface oxygenated functional groups of the ACs was estimated following the Boehm titration method. Cyclic voltammetry was conducted in H2SO4 after fabricating two-electrode capacitor cells of the ACs. The correlation of AC surface chemistry and morphology with electrochemical performance (capacitance) of powdered electrodes is analyzed and discussed.
文摘The steam-thermal method for refinery of highly-viscous oils and the process of propane-butane liquid extraction have been implemented for production of the impregnation material for carbon rock. The process of steam-thermal treatment has been carried out for highly-viscous oil from Ashalchinskoye accumulation with the “steam-oil” ratio changing from 1.1:1 to 1.4:1. The extraction process has been carried out at temperature T = 85°C and pressures from 4.5 to 8 MPa. Water absorption of carbonate rock has decreased to 0.34% as a result of SCF-impregnation process.
基金National Natural Science Foundation of China(20590360)New Century Excellent Talent Project of China(NCET-05-0783)
文摘Silica-supported CuCo catalysts were prepared by impregnation method with different impregnation sequence for higher alcohols synthesis. These catalysts were characterized by H2-TPR, XRD, N2 adsorption, XPS techniques and CO selective hydrogenation reaction measurement. The effects of impregnation sequence on the structure and performance of catalysts were investigated, and there were important influences on the selectivity to higher alcohols. There was a strong synergistic effect between copper and cobalt for the co-impregnated sample. The CuCo/SiO2 catalyst prepared by co- impregnation showed a better yield of total alcohols, and a higher selectivity to total alcohols which reached 51.5%.
基金supported by the China Postdoctoral Science Foundation(No.M2019650965)Major R&D Plan of Sichuan Province(No.2020YFQ0034)the National Natural Science Fund Projects(Grant No.51804253).
文摘Water injection for oil displacement is one of the most effective ways to develop fractured-vuggy carbonate reservoirs.With the increase in the number of rounds of water injection,the development effect gradually fails.The emergence of high-pressure capacity expansion and water injection technology allows increased production from old wells.Although high-pressure capacity expansion and water injection technology has been implemented in practice for nearly 10 years in fractured-vuggy reservoirs,its mechanism remains unclear,and the water injection curve is not apparent.In the past,evaluating its effect could only be done by measuring the injection-production volume.In this study,we analyze the mechanism of high-pressure capacity expansion and water injection.We propose a fluid exchange index for high-pressure capacity expansion and water injection and establish a discrete model suitable for high-pressure capacity expansion and water injection curves in fractured-vuggy reservoirs.We propose the following mechanisms:replenishing energy,increasing energy,replacing energy,and releasing energy.The above mechanisms can be identified by the high-pressure capacity expansion and water injection curve of the well HA6X in the Halahatang Oilfield in the Tarim Basin.By solving the basic model,the relative errors of Reservoirs I and II are found to be 1.9%and 1.5%,respectively,and the application of field examples demonstrates that our proposed high-pressure capacity expansion and water injection indicator curve is reasonable and reliable.This research can provide theoretical support for high-pressure capacity expansion and water injection technology in fracture-vuggy carbonate reservoirs.
基金supported by the financial support of National Basic Research Program of China (2012CB723105)National Natural Science Foundation of China (20976117)+1 种基金Shanxi Province Natural Science Foundation(2010011014-3)Shanxi Province Basic Conditions Platform for Science and Technology Project (2010091015)
文摘High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, respectively. The sorbent preparation process includes high-pressure impregnation, filtration, ovendry and calcination. The aim of this research is to primarily study the effects of the impregnation pressure on physical properties and desulfurization ability of the sorbent. The desulfurization experiment was carried out in a fixed-bed reactor at 500 ~C and a simulated coal gas used in this work was composed of CO (33 vol%), H2 (39 vol%), H2S (300 ppm in volume), and N2 (balance). Experimental results show that the pore structure of the SC support can be improved effectively and ZnO active component can be uniformly dispersed on the support, with the small particle size of 10-500 nm. Sorbents prepared using high-pressure impregnation have better desulfurization capacity and their active components have higher utilization rate. P20-ZnSC sorbent, obtained by high-pressure impregnation at 20 atm, has the best desulfurization ability with a sulfur capacity of 7.54 g S/100g sorbent and a breakthrough time of 44 h. Its desulfurization precision and efficiency of removing H2S from the middle temperature gases can reach 〈 1 ppm and 〉99.7%, respectively, before sorbent breakthrough.
文摘An efficient technology of impregnation of carbonate crushed stone by oil-product based on SCF-impregnation process usage with propane/butane solvent was developed. Regular impregnation throughout the volume of crushed stone sample is achieved. As a result of the appliance of proposed technology, the humidity of the treated crushed stone samples decreased down to 0.54%.
文摘Carbon dioxide (CO2) is the major component of greenhouse gas. Increase in concentration of CO2 in the atmosphere leads to global warming. To remove the CO2 from waste flue gas a four-stage counter-current multistage fluidized bed adsorber was developed and operated in continuous bubbling fluidization regime for the two丒phase system. This paper describes the optimum condition for CO2 removal efficiency in a multistage fluidized bed reactor using amine impregnated activated carbon. Response surface methodology with central composite design was used to determine the effect of three variables on the response. The variables are inlet concentration of CO2 in ppm (ranging from 3000 to 20,000), impregnation ratio of monoethanol amine (ranging from 0.2 to 0.6) and weir height in mm (20-60). The response was CO2 removal efficiency. The factor which was most influential has been identified from the analysis of variance. The optimum CO2 removal efficiency for the amine impregnated activated carbon (MEA-AC) was found to be 95.17%, at initial concentration of CO2 7312.85 ppm, chemical impregnation ratio of 0.31, and weir height 48.65 mm. From the experiment, the CO2 removal efficiency was found to be 95.97% at the same operating conditions. The predicted response was found to relevance with experimental data.
文摘A general mathematical model with its governing equations in dimensionless forms has beendeveloped to describe the removal of hydrogen sulfide with impregnated activated carbon.Anapproximate relationship between the sulfur capacity and the reaction time in a single carbon pellet isobtained,and criterion to ascertain the rate controlling step of the process can then be deduced.Inthe meantime,the choice of the appropriate oxygen concentration and the principle to be followedare also described.
基金supported by the National Natural Science Foundation of China (NSFC) on the micro behavior of heavy metal migration and transformation in lead–zinc tailings and its nano micro scale high targeted stabilization mechanism (51968033)the National Key Research and Development Program “long-term solidification of heavy metal tailings pollution/environmental functional materials, technologies and equipment of stabilizers” (2018YFC1801702)。
文摘In this study,ferric nitrate modified carbon nanotube composites (FCNT) were prepared by isovolumetric impregnation using carbon nanotubes (CNTs) as the carrier and ferric nitrates the active agent.The batch experiments showed that FCNT could effectively oxidize As(III) to As(V) and react with it to form stable iron arsenate precipitates.When the dosage of FCNT was 0.1 g·L^(–1),pH value was 5–6,reaction temperature was 35℃ and reaction time was 2 h,the best arsenic removal effect could be achieved,and the removal rate of As(V) could reach 99.1%,which was always higher than 90%under acidic conditions.The adsorption results of FCNT were found to be consistent with Langmuir adsorption by static adsorption isotherm fitting,and the maximum adsorption capacity reached 118.3 mg·g^(-1).The material phase and property analysis by scanning electron microscopy,Brunauer–Emmett–Teller,Fourier transform infrared spectoscopy,X-ray photoelectron spectroscopy and other characterization methods,as well as adsorption isotherm modeling,were used to explore the adsorption mechanism of FCNT on arsenic.It was found that FCNT has microporous structure and nanostructure,and iron nanoparticles are loosely distributed on CNTs,which makes the material have good oxidation,adsorption and magnetic separation properties.Arsenic migrates on the surface of FCNT composites is mainly removed by forming insoluble compounds and co-precipitation.All the results show that FCNT treats arsenic at low cost with high adsorption efficiency,and the results also provide the experimental data basis and theoretical basis for arsenic contamination in groundwater.
基金supported by the National Natural Science Foundation of China(Grant No.41865010)the 2020 Leading Talents of Young Science and Technology Talents in Colleges and Universities of the Inner Mongolia Autonomous Region(Grant No.NJYT-20-A04)the Project of the 10th Group of Grassland Talents of the Inner Mongolia Autonomous Region,the 2022 Inner Mongolia Outstanding Youth Fund Project,and the Key Research and Development and Achievement Transformation Program of the Inner Mongolia Autonomous Region in 2022(Grant No.2022YFHH0035).
文摘With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared by the one-step activation method, with sunflower straw (SS) used as the raw material and H3PO4 used as the activator. Four types of SSAC were prepared with impregnation ratios (weight of SS to weight of H3PO4) of 1:1, 1:2, 1:3, and 1:5, corresponding to SSAC1, SSAC2, SSAC3, and SSAC4, respectively. The adsorption process of acid fuchsin (AF) in water using the four types of SSAC was studied. The results showed that the impregnation ratio significantly affected the structure of the materials. The increase in the impregnation ratio increased the specific surface area and pore volume of SSAC and improved the adsorption capacity of AF. However, an impregnation ratio that was too large led to a decrease in specific surface area. SSAC3, with an impregnation ratio of 1:3, had the largest specific surface area (1 794.01 m2/g), and SSAC4, with an impregnation ratio of 1:5, exhibited the smallest microporosity (0.052 7 cm3/g) and the largest pore volume (2.549 cm3/g). The adsorption kinetics of AF using the four types of SSAC agreed with the quasi-second-order adsorption kinetic model. The Langmuir isotherm model was suitable to describe SSAC3 and SSAC4, and the Freundlich isotherm model was appropriate to describe SSAC1 and SSAC2. The result of thermodynamics showed that the adsorption process was spontaneous and endothermic. At 303 K, SSAC4 showed a removal rate of 97.73% for 200-mg/L AF with a maximum adsorption capacity of 2 763.36 mg/g, the highest among the four types of SSAC. This study showed that SAAC prepared by the H3PO4-based one-step activation method is a green and efficient carbon material and has significant application potential for the treatment of dye-containing wastewater.
文摘Results of research of supercritical fluid CO2-impregnation process (the static mode) within a problem of synthesis of the palladium catalyst are given. The kinetics of process is characterized in the pressure range from 15.0 to 35.0 MPa on temperatures 308.15?K, 313.15?K, 318.15?K, 323.15?K, 328.15?K and 333.15?K. Results of surface assessment and activity measurements of the catalyst samples synthesized by supercritical СO2-impregnation of aluminum oxide suggest competitiveness of the discussed approach in comparison to traditional methods.
文摘In order to develop a novel controlled-release material, we previously attempted to impregnate poly(L-lactide) (poly(L-LA)), poly(L-LA-ran-CL) (CL: ε-caprolactone) or poly(L-LA-ran-TEMC) (TEMC: tetramethylene carbonate) with low boiling point, organic useful compounds using supercritical carbon dioxide (scCO2) as the solvent. In this work, the factors influencing impregnation of poly (L-LA) random copolymers with useful compounds were investigated under scCO2 using the copolymers previously used. The influence of temperature, pressure, and time on the impregnation contents of the useful compounds on the copolymers was evaluated. The polymer used, which is a base of this material, was poly(L-LA-ran-CL), poly(L-LA-ran-TEMC), or poly(L-LA-ran-DXO) (DXO: 1,5-dioxepan-2-one). Statistical random copolymers of L-LA with CL, TEMC, or DXO were synthesized using Sn(oct)2 as a catalyst at 150°C for 24 h without solvent. Preparation of the controlled-release materials was carried out using essential bark oil from Thujopsis dolabrata var. hondae and synthetic L-LA random copolymers as a base material under scCO2. The impregnation experiment, which investigated the influence of pressure, was conducted in the range of 10 to 20 MPa. The influence of temperature on impregnation was carried out at 40°C to 100°C. Impregnation time was varied from 1 to 5 h. The pressure of essential oil impregnated into poly(L-LA) random copolymers was the highest at 14 MPa. In the influence of temperature on impregnation, the amount of essential oil increased with increasing temperature.
基金Graduate Innovation Project of Qinghai University for Nationalities(2021XJXS12)Graduate Innovation Project of Qinghai University for Nationalities(12M2021018).
文摘The activation effect of boric acid as an activator is good,and we investigate the best activation conditions for the boric acid impregnation method.To represent the structural characteristics and adsorption performance of the Stellera Chamaejasme based carbon molecular sieves,we use Brunner-Emmet-Teller(BET)measurements,scan-ning electron microscope(SEM),Raman spectra(Raman),X-ray diffraction(XRD),and adsorption property measurement.When the loading ratio was 0.68:1,the specific surface area was 532.21 m^(2)/g,the total pore volume was 0.24 cm 3/g,the average pore size was 1.81 nm,the adsorption value of methylene blue was 145.28 mg/g,and the adsorption value of iodine was 713.33 mg/g,the results showed that boric acid had better activation effect.The carbon molecular sieves made from Stellera Chamaejasme and activated with boric acid produce two peaks on the aperture distribution graph that are densely distributed in the micropore range.This indicates that boric acid’s pore-forming tendency is primarily micropore.