Objective The present study aims to investigate the concentrations of Hg and its aspects methyl mercury(Me-Hg)and inorganic mercury(I-Hg)in the biological samples(BSs)of fluorescent lamp industries workers(FLIWs).Meth...Objective The present study aims to investigate the concentrations of Hg and its aspects methyl mercury(Me-Hg)and inorganic mercury(I-Hg)in the biological samples(BSs)of fluorescent lamp industries workers(FLIWs).Methodology Different BSs including red blood cells(RBCs),plasma,urine,hair and nails were collected from the workers exposed to Hg and unexposed persons were selected as control group to measure both the T-Hg concentration as well as its species in different biological samples through quantitative analysis.Health data was collected through questionnaire survey.Results The mean concentrations of T-Hg(31.9μg/L),Me-Hg(27.7μg/L),and I-Hg(5.36μg/L)in RBCs were found significantly(P<0.001)higher among the workers(n=40)as compared to the control group(n=40).Similarly the mean Hg concentrations in plasma,urine,hair and nails were also significantly higher among the workers than the control group.The statistical relation between Hg concentration and demographic characteristics observed that workers experience and fish consumption has increased the Hg concentration while age,weight and smoking found no significant effect on Hg concentration in the BSs.Conclusion The study observed that the workers were highly exposed to high concentration of Hg and they are at a high health risk.展开更多
By utilizing a natural mercury lamp, the transverse Zeeman background correction method, which is used for trace mercury measurement in air, is studied. In this paper, a natural mercury lamp is used as a light source,...By utilizing a natural mercury lamp, the transverse Zeeman background correction method, which is used for trace mercury measurement in air, is studied. In this paper, a natural mercury lamp is used as a light source, and is placed in a 1.78-T magnetic field. The lamp emits two linearly polarized light beams σ± and π of 253.65-nm resonance line, which are used as bias light and absorbing light, respectively. A polarization modulation system is used to allow σ± and π light beams to pass through alternately with a certain frequency. A multipath optical cell with 12-m optical path is used to increase optical distance. Based on the system described above, the influence caused by UV absorbing gases, such as NO2, SO2, acetone, benzene, and O3, is analyzed. The results show that it may reduce the detection limit when the concentrations of these gases exceed 83.4 ppm, 20.3 ppm, 142.3 ppm, 0.85 ppm, and 0.55 ppm, respectively. The detection limit of the system is calculated and can achieve up to 1.44 ng/m3 in 10 minutes. Measurements on mercury sample gas and air are carded out, and the measured data are compared with the data of RA-915 mercury analyzer (Russia). The result shows that the correlation coefficient reaches up to 0.967. The experimental results indicate that the transverse Zeeman background correction method can be used to quantify trace mercury in air with high-precision.展开更多
The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated...The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated initially. The affecting factors on the photodegradation were studied and described in details, such as algae concentration, Fe3+, exposure time, and so on. The concentration of EE2 in distilled water was determined using fluorescence spectrophotometer. The photodegradation of EE2 in aqueous solution exposed to 250 W high-pressure mercury lamp was evident in the presence of algae and Fe3+. With the algae concentration increasing, photodegradation rate increased. Fe3+ could accelerate the photocatalytic degradation of EE2 in aqueous solution with algae. The colloidal ferric hydroxide particles that might have absorbed on the algae cells could enhance the photocatalytic degradation of EE2 by algae. The catalysis in photocatalytic degradation reaction mainly resulted from the active oxygen (H2O2,1O2 and ·OH) that was caused by algae and Fe3+ under 250 W HPML. In this paper, the mechanism of photocatalytic degradation of EE2 by algae and Fe3+ is discussed theoretically in details. Key words 17α-ethynylestradiol - photodegradation - high-pressure mercury lamp - Nitzschia hantzschiana - Chlorella vulgaris - Fe3+ CLC number X 131. 2 Foundation item: Supported by the Scientific Research Foundation of Wuhan Environmental Protection Bureau and the National Natural Science Foundation of China (20177017)Biography: Liu Xian-li (1965-), male, Ph. D candidate, Associate professor, research direction: environmental chemistry展开更多
文摘Objective The present study aims to investigate the concentrations of Hg and its aspects methyl mercury(Me-Hg)and inorganic mercury(I-Hg)in the biological samples(BSs)of fluorescent lamp industries workers(FLIWs).Methodology Different BSs including red blood cells(RBCs),plasma,urine,hair and nails were collected from the workers exposed to Hg and unexposed persons were selected as control group to measure both the T-Hg concentration as well as its species in different biological samples through quantitative analysis.Health data was collected through questionnaire survey.Results The mean concentrations of T-Hg(31.9μg/L),Me-Hg(27.7μg/L),and I-Hg(5.36μg/L)in RBCs were found significantly(P<0.001)higher among the workers(n=40)as compared to the control group(n=40).Similarly the mean Hg concentrations in plasma,urine,hair and nails were also significantly higher among the workers than the control group.The statistical relation between Hg concentration and demographic characteristics observed that workers experience and fish consumption has increased the Hg concentration while age,weight and smoking found no significant effect on Hg concentration in the BSs.Conclusion The study observed that the workers were highly exposed to high concentration of Hg and they are at a high health risk.
基金Project supported by the National Natural Science Foundation of China(Grant No.41275037)the Science-Technology Foundation for Young Scientist of Anhui Province,China(Grant No.1308085JGD03)the Anhui Provincial Natural Science Foundation,China(Grant No.1308085QF124)
文摘By utilizing a natural mercury lamp, the transverse Zeeman background correction method, which is used for trace mercury measurement in air, is studied. In this paper, a natural mercury lamp is used as a light source, and is placed in a 1.78-T magnetic field. The lamp emits two linearly polarized light beams σ± and π of 253.65-nm resonance line, which are used as bias light and absorbing light, respectively. A polarization modulation system is used to allow σ± and π light beams to pass through alternately with a certain frequency. A multipath optical cell with 12-m optical path is used to increase optical distance. Based on the system described above, the influence caused by UV absorbing gases, such as NO2, SO2, acetone, benzene, and O3, is analyzed. The results show that it may reduce the detection limit when the concentrations of these gases exceed 83.4 ppm, 20.3 ppm, 142.3 ppm, 0.85 ppm, and 0.55 ppm, respectively. The detection limit of the system is calculated and can achieve up to 1.44 ng/m3 in 10 minutes. Measurements on mercury sample gas and air are carded out, and the measured data are compared with the data of RA-915 mercury analyzer (Russia). The result shows that the correlation coefficient reaches up to 0.967. The experimental results indicate that the transverse Zeeman background correction method can be used to quantify trace mercury in air with high-precision.
文摘The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated initially. The affecting factors on the photodegradation were studied and described in details, such as algae concentration, Fe3+, exposure time, and so on. The concentration of EE2 in distilled water was determined using fluorescence spectrophotometer. The photodegradation of EE2 in aqueous solution exposed to 250 W high-pressure mercury lamp was evident in the presence of algae and Fe3+. With the algae concentration increasing, photodegradation rate increased. Fe3+ could accelerate the photocatalytic degradation of EE2 in aqueous solution with algae. The colloidal ferric hydroxide particles that might have absorbed on the algae cells could enhance the photocatalytic degradation of EE2 by algae. The catalysis in photocatalytic degradation reaction mainly resulted from the active oxygen (H2O2,1O2 and ·OH) that was caused by algae and Fe3+ under 250 W HPML. In this paper, the mechanism of photocatalytic degradation of EE2 by algae and Fe3+ is discussed theoretically in details. Key words 17α-ethynylestradiol - photodegradation - high-pressure mercury lamp - Nitzschia hantzschiana - Chlorella vulgaris - Fe3+ CLC number X 131. 2 Foundation item: Supported by the Scientific Research Foundation of Wuhan Environmental Protection Bureau and the National Natural Science Foundation of China (20177017)Biography: Liu Xian-li (1965-), male, Ph. D candidate, Associate professor, research direction: environmental chemistry