Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance ...Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance as the thickness increases,caused by increasing ion diffusion limitation.Further limitations include restacking of the nanosheets,which makes it challenging to realize the full potential of these electrode materials.Herein,we demonstrate the design of a vertically aligned MXene hydrogel composite,achieved by thermal-assisted self-assembled gelation,for high-rate energy storage.The highly interconnected MXene network in the hydrogel architecture provides very good electron transport properties,and its vertical ion channel structure facilitates rapid ion transport.The resulting hydrogel electrode show excellent performance in both aqueous and organic electrolytes with respect to high capacitance,stability,and high-rate capability for up to 300μm thick electrodes,which represents a significant step toward practical applications.展开更多
Since 2019,research into MXene derivatives has seen a dramatic rise;further progress requires a rational design for specific functionality.Herein,through a molecular design by selecting suitable functional groups in t...Since 2019,research into MXene derivatives has seen a dramatic rise;further progress requires a rational design for specific functionality.Herein,through a molecular design by selecting suitable functional groups in the MXene coating,we have implemented the dual N doping of the derivatives,nitrogen-doped TiO_(2)@nitrogen-doped carbon nanosheets(N-TiO_(2)@NC),to strike a balance between the active anatase TiO_(2)at low temperatures,and carbon activation at high temperatures.The NH_(3)reduction environment generated at 400℃as evidenced by the in situ pyrolysis SVUV-PIMS process is crucial for concurrent phase engineering.With both electrical conductivity and surface Na+availability,the N-TiO_(2)@NC achieves higher interface capacitive-like sodium storage with long-term stability.More than 100 mAh g^(-1)is achieved at 2 A g^(-1)after 5000 cycles.The proposed design may be extended to other MXenes and solidify the growing family of MXene derivatives for energy storage.展开更多
The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recyc...The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite.展开更多
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio...The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.展开更多
The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents ...The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS.展开更多
Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure...Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure and performance.Herein,the residual fluoride self-activated effect is proposed for the upgraded utilization of RG.Simple and low-energy water immersion treatment not only widens the interlayer spacing,but also retains appropriate fluoride on the surface of RG.Theoretical analysis and experiments demonstrate that the residual fluoride can optimize Li~+migration and deposition kinetics,resulting in better Li~+intercalation/deintercalation in the interlayer and more stable Li metal plating/stripping on the surface of RG,As a result,the designed LFP||RG full cells achieve ultrahigh reversibility(~100%Coulombic efficiency),high capacity retention(67%after 200 cycles,0.85 N/P ratio),and commendable adaptability(stable cycling without short-circuiting,0.15 N/P ratio).The energy density is improved from 334 Wh kg^(-1)of 1.1 N/P ratio to 367 Wh kg^(-1)of 0.85 N/P ratio(total mass based on cathode and anode).The exploration of RG by residual fluoride self-activated effect achieves upgraded utilization beyond fresh commercial graphite and highlights a new strategy for efficient reuse of SLIBs.展开更多
To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put fo...To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.展开更多
The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength...The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution.展开更多
In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero...In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.展开更多
Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbon...Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect.展开更多
The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled ...The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential.展开更多
A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with ...A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed.展开更多
Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and ...Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.展开更多
Recycling is viewed as a key component in a circular economy and serves as an ideal solution for promoting sustainability.During the global plastic crisis,plastic recycling practices have been adopted worldwide,leadin...Recycling is viewed as a key component in a circular economy and serves as an ideal solution for promoting sustainability.During the global plastic crisis,plastic recycling practices have been adopted worldwide,leading to the production of various products made from recycled plastics(PRP).Nevertheless,a gap persists between consumption and demand for such products,which is primarily attributed to a lack of comprehension from the consumer perspective.Given the pivotal role consumers play in the adoption of these products,this study explores consumers’intentions to purchase PRP.This is particularly significant in Vietnam,which is an emerging economy aspiring to achieve the objectives of a circular economy and sustainable development.Utilizing an integrated cognitive-emotional framework comprising the Valence Theory and the Norm Activation Model,data from 564 Vietnamese students were gathered and analyzed using structural equation modeling.The results show that awareness of consequences is a major driver of consumer purchase intentions,followed by perceived ease of application and monetary incentives.The results also indicate that health concerns have the strongest effect on purchase intention and in the negative side,meaning that the health-related risk is the primary concern for consumers during the decision-making process.This research holds substantial value for academics and managers,as it aids in the theoretical exploration and the formulation of strategies to improve consumer acceptance of PRP.展开更多
Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is t...Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is the closest ocean glacier area to the equator in Eurasia.Daily precipitation samples were collected from 2017 to 2018 in Lijiang to quantify the effect of sub-cloud evaporation and recycled moisture on precipitation combined with the d-excess model during monsoon and non-monsoon periods.The results indicated that the d-excess values of precipitation fluctuated between–35.6‰and 16.0‰,with an arithmetic mean of 3.5‰.The local meteoric water line(LMWL)wasδD=7.91δ^(18)O+2.50,with a slope slightly lower than the global meteoric water line(GMWL).Subcloud evaporation was higher during the non-monsoon season than during the monsoon season.It tended to peak in March and was primarily influenced by the relative humidity.The source of the water vapour affected the proportion of recycled moisture.According to the results of the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,the main sources of water vapour in Lijiang area during the monsoon period were the southwest and southeast monsoons.During the non-monsoon period,water vapour was transported by a southwesterly flow.The recycled moisture in Lijiang area between March and October 2017 was 10.62%.Large variations were observed between the monsoon and non-monsoon seasons,with values of 5.48%and 25.65%,respectively.These differences were primarily attributed to variations in the advection of water vapour.The recycled moisture has played a supplementary role in the precipitation of Lijiang area.展开更多
Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wast...Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wastes is expected to offer sustainable solutions to waste recycling while enhancing the performance of roads.This review provides an extensive analysis of the recycling of three main types of solid wastes for road engineering purposes:industrial solid waste,infrastructure solid waste,and municipal life solid waste.Industrial solid wastes suitable for road engineering generally include coal gangue,fly ash,blast furnace slag,silica fume,and steel slag,etc.Infrastructure solid wastes recycled in road engineering primarily consist of construction&demolition waste,reclaimed asphalt pavements,and recycled cement concrete.Furthermore,recent exploration has extended to the utilization of municipal life solid wastes,such as incinerated bottom ash,glass waste,electronics waste,plastic waste,and rubber waste in road engineering applications.These recycled solid wastes are categorized into solid waste aggregates,solid waste cements,and solid waste fillers,each playing distinct roles in road infrastructure.Roles of solid waste acting aggregates,cements,and fillers in road infrastructures were fully investigated,including their pozzolanic properties,integration effects to virgin materials,modification or enhancement solutions,engineering performances.Utilization of these materials not only addresses the challenge of waste management but also offers environmental benefits aiming carbon neutral and contributes to sustainable infrastructure development.However,challenges such as variability in material properties,environmental impact mitigation,secondary pollution to environment by leaching,and concerns regarding long-term performance need to be further addressed.Despite these challenges,the recycled solid wastes hold immense potential in revolutionizing road construction practices and fostering environmental stewardship.This review delves into a bird’seye view of the utilization of recycled solid wastes in road engineering,highlighting advances,benefits,challenges,and future prospects.展开更多
Recycled large aggregate self-compacting concrete (RLA-SCC) within multiple weak areas. These weak areas have poor resistance to chloride ion erosion, which affects the service life of RLA-SCC in the marine environmen...Recycled large aggregate self-compacting concrete (RLA-SCC) within multiple weak areas. These weak areas have poor resistance to chloride ion erosion, which affects the service life of RLA-SCC in the marine environment. A three-dimensional multi-phase mesoscopic numerical model of RLA-SCC was established to simulate the chloride ions transportation in concrete. Experiments of RLA-SCC immersing in chloride solution were carried out to verify the simulation results. The effects of recycled large aggregate (RLA) content and RLA particle size on the service life of concrete were explored. The results indicate that the mesoscopic numerical simulation results are in good agreement with the experimental results. At the same depth, the closer to the surface of the RLA, the greater the chloride ion concentration. The service life of RLA-SCC in marine environment decreases with the increase of RLA content. Compared with the service life of 20% content, the service life of 25% and 30% content decreased by 20% and 42% respectively. Increasing the particle size of RLA can effectively improve the service life of RLA-SCC in chloride environment. Compared with the service life of 50 mm particle size, the service life of 70 mm and 90 mm increased by 61% and 163%, respectively. .展开更多
The utilization of waste concrete as a raw material for recycled concrete in the domain of prefabricated components is garnering greater interest.This paper delineates and examines the concept,categorization,methodolo...The utilization of waste concrete as a raw material for recycled concrete in the domain of prefabricated components is garnering greater interest.This paper delineates and examines the concept,categorization,methodologies of preparation,applicable sectors,and evaluative metrics of recycled concrete technology,highlighting its prospective benefits.Nonetheless,for the successful integration of recycled concrete technology into prefabricated component applications,it is imperative to systematically enhance its physical,mechanical,and attributes,as well as its environmental efficacy.Moreover,to foster the continued advancement of recycled concrete technology,innovative initiatives,standardization,educational programs,demonstration projects,and collaborative efforts are crucial to promote broader adoption and realize improved outcomes within the realm of prefabricated components.In conclusion,recycled concrete technology is poised to play a pivotal role in prefabricated construction,offering robust support for propelling the construction industry towards a sustainable future.展开更多
Recycled aggregate concrete refers to a new type of concrete material made by processing waste concrete materials through grading,crushing,and cleaning,and then mixing them with cement,water,and other materials in a c...Recycled aggregate concrete refers to a new type of concrete material made by processing waste concrete materials through grading,crushing,and cleaning,and then mixing them with cement,water,and other materials in a certain gradation or proportion.This type of concrete is highly suitable for modern construction waste disposal and reuse and has been widely used in various construction projects.It can also be used as an environmentally friendly permeable brick material to promote the development of modern green buildings.However,practical applications have found that compared to ordinary concrete,the durability of this type of concrete is more susceptible to high-temperature and complex environments.Based on this,this paper conducts theoretical research on its durability in high-temperature and complex environments,including the current research status,existing problems,and application prospects of recycled aggregate concrete’s durability in such environments.It is hoped that this analysis can provide some reference for studying the influence of high-temperature and complex environments on recycled aggregate concrete and its subsequent application strategies.展开更多
基金financed by the National Natural Science Foundation of China(52103212)Jiangxi Provincial Natural Science Foundation(20224BAB214022)+7 种基金the SSF Synergy Program(EM16-0004)Swedish Energy Agency(EM 42033-1)the Knut and Alice Wal enberg(KAW)Foundation through a Fellowship Grant and a Project Grant(KAW2020.0033)Support from the National Natural Science Foundation of China(61774077)the Youth Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province(2020A1515110738)the Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province(2019B1515120073)the High-End Foreign Experts Project(G20200019046)the Guangzhou Key laboratory of Vacuum Coating Technologies and New Energy Materials Open Projects Fund(KFVE20200006)
文摘Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance as the thickness increases,caused by increasing ion diffusion limitation.Further limitations include restacking of the nanosheets,which makes it challenging to realize the full potential of these electrode materials.Herein,we demonstrate the design of a vertically aligned MXene hydrogel composite,achieved by thermal-assisted self-assembled gelation,for high-rate energy storage.The highly interconnected MXene network in the hydrogel architecture provides very good electron transport properties,and its vertical ion channel structure facilitates rapid ion transport.The resulting hydrogel electrode show excellent performance in both aqueous and organic electrolytes with respect to high capacitance,stability,and high-rate capability for up to 300μm thick electrodes,which represents a significant step toward practical applications.
基金financially supported by the National Key R&D Program of China(2021YFA1501502)National Natural Science Foundation of China(22075263,52002366)+2 种基金Fundamental Research Funds for the Central Universities(WK2060000039)USTC Research Funds(KY2060000165,GG2060007008)Natural Science Foundation of Jiangsu Province(BK20200386)
文摘Since 2019,research into MXene derivatives has seen a dramatic rise;further progress requires a rational design for specific functionality.Herein,through a molecular design by selecting suitable functional groups in the MXene coating,we have implemented the dual N doping of the derivatives,nitrogen-doped TiO_(2)@nitrogen-doped carbon nanosheets(N-TiO_(2)@NC),to strike a balance between the active anatase TiO_(2)at low temperatures,and carbon activation at high temperatures.The NH_(3)reduction environment generated at 400℃as evidenced by the in situ pyrolysis SVUV-PIMS process is crucial for concurrent phase engineering.With both electrical conductivity and surface Na+availability,the N-TiO_(2)@NC achieves higher interface capacitive-like sodium storage with long-term stability.More than 100 mAh g^(-1)is achieved at 2 A g^(-1)after 5000 cycles.The proposed design may be extended to other MXenes and solidify the growing family of MXene derivatives for energy storage.
基金Bundesministerium für Bildung und Forschung,Grant/Award Numbers:03XP0138C,03XP0306C。
文摘The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite.
基金Funded by the National Natural Science Foundation of China(No.51908183)the Natural Science Foundation of Hebei Province(No.E2023202101)。
文摘The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.
基金supported by National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas) (Grant No.22FAA02811)Pearl River Talent Plan for the Introduction of High-level Talents (Young Top-notch Talents) (Grant No.2021QN02G744)+1 种基金National Natural Science Foundation of China (Grant No.52178426)the Fundamental Research Funds for the Central Universities (Grant No.SCUT 2022ZYGXZR066 and 2023ZYGXZR001).
文摘The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS.
基金the National Natural Science Foundation of China(21975212)the Industry Leading Key Projects of Fujian Province(2022H0057)the High-level talent start-up Foundation of Xiamen Institute of Technology for financial support。
文摘Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure and performance.Herein,the residual fluoride self-activated effect is proposed for the upgraded utilization of RG.Simple and low-energy water immersion treatment not only widens the interlayer spacing,but also retains appropriate fluoride on the surface of RG.Theoretical analysis and experiments demonstrate that the residual fluoride can optimize Li~+migration and deposition kinetics,resulting in better Li~+intercalation/deintercalation in the interlayer and more stable Li metal plating/stripping on the surface of RG,As a result,the designed LFP||RG full cells achieve ultrahigh reversibility(~100%Coulombic efficiency),high capacity retention(67%after 200 cycles,0.85 N/P ratio),and commendable adaptability(stable cycling without short-circuiting,0.15 N/P ratio).The energy density is improved from 334 Wh kg^(-1)of 1.1 N/P ratio to 367 Wh kg^(-1)of 0.85 N/P ratio(total mass based on cathode and anode).The exploration of RG by residual fluoride self-activated effect achieves upgraded utilization beyond fresh commercial graphite and highlights a new strategy for efficient reuse of SLIBs.
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)the Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023,and GJJ181022)。
文摘To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.
基金Funded by the National Natural Science Foundation of China(No.52078050)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JZ-22)。
文摘The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution.
基金This work is supported by the Zhuhai Science and Technology Project(ZH22036203200015PWC)the Open Foundation of State Key Laboratory of Subtropical Building Science(2022ZB20).
文摘In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023 and GJJ181022)。
文摘Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect.
基金financially sponsored by Qing Lan Project in Jiangsu Province of China(2023)Scientific Research Project of Taizhou Polytechnic College(TZYKY-22-4).
文摘The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential.
基金Funded by the National Natural Science Foundation of China(No.U1904188)。
文摘A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed.
基金supported by the Key R&D Projects in Yunnan Province under Grant Number 202203AC100004Additional funding was provided by the Major Science and Technology Project of the Ministry of Water Resources under Grant Number SKS-2022057.
文摘Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.
文摘Recycling is viewed as a key component in a circular economy and serves as an ideal solution for promoting sustainability.During the global plastic crisis,plastic recycling practices have been adopted worldwide,leading to the production of various products made from recycled plastics(PRP).Nevertheless,a gap persists between consumption and demand for such products,which is primarily attributed to a lack of comprehension from the consumer perspective.Given the pivotal role consumers play in the adoption of these products,this study explores consumers’intentions to purchase PRP.This is particularly significant in Vietnam,which is an emerging economy aspiring to achieve the objectives of a circular economy and sustainable development.Utilizing an integrated cognitive-emotional framework comprising the Valence Theory and the Norm Activation Model,data from 564 Vietnamese students were gathered and analyzed using structural equation modeling.The results show that awareness of consequences is a major driver of consumer purchase intentions,followed by perceived ease of application and monetary incentives.The results also indicate that health concerns have the strongest effect on purchase intention and in the negative side,meaning that the health-related risk is the primary concern for consumers during the decision-making process.This research holds substantial value for academics and managers,as it aids in the theoretical exploration and the formulation of strategies to improve consumer acceptance of PRP.
基金Under the auspices of National Natural Science Foundation of China (No.42101044,42077188,52109007)。
文摘Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is the closest ocean glacier area to the equator in Eurasia.Daily precipitation samples were collected from 2017 to 2018 in Lijiang to quantify the effect of sub-cloud evaporation and recycled moisture on precipitation combined with the d-excess model during monsoon and non-monsoon periods.The results indicated that the d-excess values of precipitation fluctuated between–35.6‰and 16.0‰,with an arithmetic mean of 3.5‰.The local meteoric water line(LMWL)wasδD=7.91δ^(18)O+2.50,with a slope slightly lower than the global meteoric water line(GMWL).Subcloud evaporation was higher during the non-monsoon season than during the monsoon season.It tended to peak in March and was primarily influenced by the relative humidity.The source of the water vapour affected the proportion of recycled moisture.According to the results of the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,the main sources of water vapour in Lijiang area during the monsoon period were the southwest and southeast monsoons.During the non-monsoon period,water vapour was transported by a southwesterly flow.The recycled moisture in Lijiang area between March and October 2017 was 10.62%.Large variations were observed between the monsoon and non-monsoon seasons,with values of 5.48%and 25.65%,respectively.These differences were primarily attributed to variations in the advection of water vapour.The recycled moisture has played a supplementary role in the precipitation of Lijiang area.
基金A number of financial funding including the National Natural Science Foundation of China(Nos.52278455,52268068,52078018,52208434)National Key R&D Program of China(2022YFE0137300)+5 种基金the ShuGuang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.21SG24)China Postdoctoral Science Foundation(No.2022M711079)Provincial Natural Science Foundation/Postdoctoral Research Grant/Science and Technology Project(Nos.222300420142,202103107,192102310229)have to be acknowledged for supporting this manuscript.As well,some university's funding including Chang'an University(No.CHD300102213507)Changsha University of Science and Technology(No.KFJ230206)Henan University of Technology(No.21420156)are also appreciated.Meanwhile,the strong supports from the Editor Office of Journal of Road Engineering have to be highly acknowledged for their kindly inviting,guiding,assisting,and improving on the manuscript of current review.
文摘Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wastes is expected to offer sustainable solutions to waste recycling while enhancing the performance of roads.This review provides an extensive analysis of the recycling of three main types of solid wastes for road engineering purposes:industrial solid waste,infrastructure solid waste,and municipal life solid waste.Industrial solid wastes suitable for road engineering generally include coal gangue,fly ash,blast furnace slag,silica fume,and steel slag,etc.Infrastructure solid wastes recycled in road engineering primarily consist of construction&demolition waste,reclaimed asphalt pavements,and recycled cement concrete.Furthermore,recent exploration has extended to the utilization of municipal life solid wastes,such as incinerated bottom ash,glass waste,electronics waste,plastic waste,and rubber waste in road engineering applications.These recycled solid wastes are categorized into solid waste aggregates,solid waste cements,and solid waste fillers,each playing distinct roles in road infrastructure.Roles of solid waste acting aggregates,cements,and fillers in road infrastructures were fully investigated,including their pozzolanic properties,integration effects to virgin materials,modification or enhancement solutions,engineering performances.Utilization of these materials not only addresses the challenge of waste management but also offers environmental benefits aiming carbon neutral and contributes to sustainable infrastructure development.However,challenges such as variability in material properties,environmental impact mitigation,secondary pollution to environment by leaching,and concerns regarding long-term performance need to be further addressed.Despite these challenges,the recycled solid wastes hold immense potential in revolutionizing road construction practices and fostering environmental stewardship.This review delves into a bird’seye view of the utilization of recycled solid wastes in road engineering,highlighting advances,benefits,challenges,and future prospects.
文摘Recycled large aggregate self-compacting concrete (RLA-SCC) within multiple weak areas. These weak areas have poor resistance to chloride ion erosion, which affects the service life of RLA-SCC in the marine environment. A three-dimensional multi-phase mesoscopic numerical model of RLA-SCC was established to simulate the chloride ions transportation in concrete. Experiments of RLA-SCC immersing in chloride solution were carried out to verify the simulation results. The effects of recycled large aggregate (RLA) content and RLA particle size on the service life of concrete were explored. The results indicate that the mesoscopic numerical simulation results are in good agreement with the experimental results. At the same depth, the closer to the surface of the RLA, the greater the chloride ion concentration. The service life of RLA-SCC in marine environment decreases with the increase of RLA content. Compared with the service life of 20% content, the service life of 25% and 30% content decreased by 20% and 42% respectively. Increasing the particle size of RLA can effectively improve the service life of RLA-SCC in chloride environment. Compared with the service life of 50 mm particle size, the service life of 70 mm and 90 mm increased by 61% and 163%, respectively. .
基金Supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202204305,and No.KJQN202305501).
文摘The utilization of waste concrete as a raw material for recycled concrete in the domain of prefabricated components is garnering greater interest.This paper delineates and examines the concept,categorization,methodologies of preparation,applicable sectors,and evaluative metrics of recycled concrete technology,highlighting its prospective benefits.Nonetheless,for the successful integration of recycled concrete technology into prefabricated component applications,it is imperative to systematically enhance its physical,mechanical,and attributes,as well as its environmental efficacy.Moreover,to foster the continued advancement of recycled concrete technology,innovative initiatives,standardization,educational programs,demonstration projects,and collaborative efforts are crucial to promote broader adoption and realize improved outcomes within the realm of prefabricated components.In conclusion,recycled concrete technology is poised to play a pivotal role in prefabricated construction,offering robust support for propelling the construction industry towards a sustainable future.
基金Chongqing Municipal Education Commission Science and Technology Research Project(Project No.KJQN202301910).
文摘Recycled aggregate concrete refers to a new type of concrete material made by processing waste concrete materials through grading,crushing,and cleaning,and then mixing them with cement,water,and other materials in a certain gradation or proportion.This type of concrete is highly suitable for modern construction waste disposal and reuse and has been widely used in various construction projects.It can also be used as an environmentally friendly permeable brick material to promote the development of modern green buildings.However,practical applications have found that compared to ordinary concrete,the durability of this type of concrete is more susceptible to high-temperature and complex environments.Based on this,this paper conducts theoretical research on its durability in high-temperature and complex environments,including the current research status,existing problems,and application prospects of recycled aggregate concrete’s durability in such environments.It is hoped that this analysis can provide some reference for studying the influence of high-temperature and complex environments on recycled aggregate concrete and its subsequent application strategies.