Three kinds of coplanar waveguides (CPWs) are designed and fabricated on different silicon substrates---common low-resistivity silicon substrate (LRS), LRS with a 3μm-thick silicon oxide interlayer, and high-resi...Three kinds of coplanar waveguides (CPWs) are designed and fabricated on different silicon substrates---common low-resistivity silicon substrate (LRS), LRS with a 3μm-thick silicon oxide interlayer, and high-resistivity silicon (HRS) substrate. The results show that the microwave loss of a CPW on LRS is too high to be used, but it can be greatly reduced by adding a thick interlayer of silicon oxide between the CPW transmission lines and the LRS.A CPW directly on HRS shows a loss lower than 2dB/cm in the range of 0-26GHz and the process is simple,so HRS is a more suitable CPW substrate.展开更多
In recent years, microstrip antennas have been more widely applied in satellite communications, mobile phones, unmanned aerial vehicle (UAV), and weapons. A micro-electro-mechanical systems-based (MEMS-based) high...In recent years, microstrip antennas have been more widely applied in satellite communications, mobile phones, unmanned aerial vehicle (UAV), and weapons. A micro-electro-mechanical systems-based (MEMS-based) high-resistance silicon C-band microstrip antenna array has been designed for the intelligent ammunition. The center frequency is 4.5 GHz. A cavity has been designed in substrate to reduce the dielectric constant of silicon and high-resistance silicon has been used as the material of substrate to improve the gain of antenna. It is very easy to be manufactured by using MEMS technology because of the improved structure of the antenna. The results show that the gain of the antenna is 8 dB and voltage standing wave ratio (VSWR) is less than 2 by the analysis and simulation in high freauencv structure simulator (HFSS).展开更多
In this paper, a novel compact CPW-fed slot small antenna was designed and fabricated on high-resistivity silicon (HR-Si) by micro-electronics process. The results of simulation are consistent with results of measur...In this paper, a novel compact CPW-fed slot small antenna was designed and fabricated on high-resistivity silicon (HR-Si) by micro-electronics process. The results of simulation are consistent with results of measurement for the antenna. The mode of the antenna is vertical and horizontal bidirectional radiations. The gain of antenna is 2.5 dB, and the resonance frequency approximately is 3 GHz. This fabrication can be compatible with antenna integration and CMOS process. The parameters of this antenna are for reference radar antenna system of Unmanned Aerial Vehicles (UAV), satellite transmission, and communication.展开更多
文摘Three kinds of coplanar waveguides (CPWs) are designed and fabricated on different silicon substrates---common low-resistivity silicon substrate (LRS), LRS with a 3μm-thick silicon oxide interlayer, and high-resistivity silicon (HRS) substrate. The results show that the microwave loss of a CPW on LRS is too high to be used, but it can be greatly reduced by adding a thick interlayer of silicon oxide between the CPW transmission lines and the LRS.A CPW directly on HRS shows a loss lower than 2dB/cm in the range of 0-26GHz and the process is simple,so HRS is a more suitable CPW substrate.
基金supported by the Chinese PLA General Armament Department under Grant No.51318020305
文摘In recent years, microstrip antennas have been more widely applied in satellite communications, mobile phones, unmanned aerial vehicle (UAV), and weapons. A micro-electro-mechanical systems-based (MEMS-based) high-resistance silicon C-band microstrip antenna array has been designed for the intelligent ammunition. The center frequency is 4.5 GHz. A cavity has been designed in substrate to reduce the dielectric constant of silicon and high-resistance silicon has been used as the material of substrate to improve the gain of antenna. It is very easy to be manufactured by using MEMS technology because of the improved structure of the antenna. The results show that the gain of the antenna is 8 dB and voltage standing wave ratio (VSWR) is less than 2 by the analysis and simulation in high freauencv structure simulator (HFSS).
基金the National Natural Science Foundation of China (Grants No. 60676047)Applied Materials-Shanghai Research and Development Fund (Grants No.06SA11)
文摘In this paper, a novel compact CPW-fed slot small antenna was designed and fabricated on high-resistivity silicon (HR-Si) by micro-electronics process. The results of simulation are consistent with results of measurement for the antenna. The mode of the antenna is vertical and horizontal bidirectional radiations. The gain of antenna is 2.5 dB, and the resonance frequency approximately is 3 GHz. This fabrication can be compatible with antenna integration and CMOS process. The parameters of this antenna are for reference radar antenna system of Unmanned Aerial Vehicles (UAV), satellite transmission, and communication.