BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a n...BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a novel high-resolution magnification endoscopy with blue laser imaging(BLI),thus providing a new insight into the microcirculation of early colon tumors.AIM To observe the superficial microcirculation of colorectal adenomas using the novel magnifying colonoscope with BLI and quantitatively analyzed the changes in hemodynamic parameters.METHODS From October 2019 to January 2020,11 patients were screened for colon adenomas with the novel high-resolution magnification endoscope with BLI.Video images were recorded and processed with Adobe Premiere,Adobe Photoshop and Image-pro Plus software.Four microcirculation parameters:Microcirculation vessel density(MVD),mean vessel width(MVW)with width standard deviation(WSD),and blood flow velocity(BFV),were calculated for adenomas and the surrounding normal mucosa.RESULTS A total of 16 adenomas were identified.Compared with the normal surrounding mucosa,the superficial vessel density in the adenomas was decreased(MVD:0.95±0.18 vs 1.17±0.28μm/μm2,P<0.05).MVW(5.11±1.19 vs 4.16±0.76μm,P<0.05)and WSD(11.94±3.44 vs 9.04±3.74,P<0.05)were both increased.BFV slowed in the adenomas(709.74±213.28 vs 1256.51±383.31μm/s,P<0.05).CONCLUSION The novel high-resolution magnification endoscope with BLI can be used for in vivo study of adenoma superficial microcirculation.Superficial vessel density was decreased,more irregular,with slower blood flow.展开更多
BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imag...BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.展开更多
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con...A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.展开更多
BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentat...BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentation of VAD can be heterogeneous,with common symptoms including headache,dizziness and balance problems.Timely diagnosis and treatment are crucial for favorable outcomes;however,VAD is often missed due to its variable clinical presentation and lack of robust diagnostic guidelines.High-resolution magnetic resonance imaging(HRMRI)has emerged as a reliable diagnostic tool for VAD,providing detailed visualization of vessel wall abnormalities.CASE SUMMARY A young male patient presented with an acute onset of severe headache,vomiting,and seizures,followed by altered consciousness.Imaging studies revealed bilateral VAD,basilar artery thrombosis,multiple brainstem and cerebellar infarcts,and subarachnoid hemorrhage.Digital subtraction angiography(DSA)revealed vertebral artery stenosis but failed to detect the dissection,potentially because intramural thrombosis obscured the VAD.In contrast,HRMRI confirmed the diagnosis by revealing specific signs of dissection.The patient was managed conservatively with antiplatelet therapy and other supportive measures,such as blood pressure control and pain management.After 5 mo of rehabilitation,the patient showed significant improvement in swallowing and limb strength.CONCLUSION HR-MRI can provide precise evidence for the identification of VAD.展开更多
Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for ga...Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting.A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate(ADR)and the mean number of adenomas per procedure(MAP)of TXI compared with those of white-light imaging(WLI)observation(58.7%vs 42.7%,adjusted relative risk 1.35,95%CI:1.17-1.56;1.36 vs 0.89,adjusted incident risk ratio 1.48,95%CI:1.22-1.80,respectively).A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI(1.5 vs 1.0,adjusted odds ratio 1.4,95%CI:1.2-1.6;58.2%vs 46.8%,1.5,1.0-2.3,respectively).A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure(0.29 vs 0.30,difference for non-inferiority-0.01,95%CI:-0.10 to 0.08).A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis.A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI(0.71%vs 0.29%).A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI(69.2%vs 52.5%and 85.3%vs 78.7%,res-pectively).In conclusion,TXI can improve gastrointestinal lesion detection and qualitative diagnosis.Therefore,further studies on the efficacy of TXI in clinical practice are required.展开更多
For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the...For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.展开更多
Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but ...Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE.展开更多
As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most q...As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.展开更多
The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication ...The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.展开更多
We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynam...We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynamics of hyperchaotic map,a color image encryption scheme is designed.At the end of the encryption process,a DNA mutation operation is used to increase the encoding images’randomness and to improve the encryption algorithm’s security.Finally,simulation experiments,performance analysis,and attack tests are performed to prove the effectiveness and security of the designed algorithm.This work provides the possibility of applying chaos theory and gene theory in image encryption.展开更多
Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis.To overcome the limitations of the co...Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis.To overcome the limitations of the color rendering method based on deep learning,such as poor model stability,poor rendering quality,fuzzy boundaries and crossed color boundaries,we propose a novel hinge-cross-entropy generative adversarial network(HCEGAN).The self-attention mechanism was added and improved to focus on the important information of the image.And the hinge-cross-entropy loss function was used to stabilize the training process of GAN models.In this study,we implement the HCEGAN model for image color rendering based on DIV2K and COCO datasets,and evaluate the results using SSIM and PSNR.The experimental results show that the proposed HCEGAN automatically re-renders images,significantly improves the quality of color rendering and greatly improves the stability of prior GAN models.展开更多
Nowadays,high-resolution images pose several challenges in the context of image encryption.The encryption of huge images’file sizes requires high computational resources.Traditional encryption techniques like,Data En...Nowadays,high-resolution images pose several challenges in the context of image encryption.The encryption of huge images’file sizes requires high computational resources.Traditional encryption techniques like,Data Encryption Standard(DES),and Advanced Encryption Standard(AES)are not only inefficient,but also less secure.Due to characteristics of chaos theory,such as periodicity,sensitivity to initial conditions and control parameters,and unpredictability.Hence,the characteristics of deoxyribonucleic acid(DNA),such as vast parallelism and large storage capacity,make it a promising field.This paper presents an efficient color image encryption method utilizing DNA encoding with two types of hyper-chaotic maps.The proposed encryption method comprises three steps.The first step initializes the conditions for generating Lorenz and Rossler hyper-chaotic maps using a plain image Secure Hash Algorithm(SHA-256/384).The second step performs a confusion procedure by scrambling the three components of the image(red,green,and blue)using Lorenz hyper-chaotic sequences.Finally,the third step combines three approaches to encrypt the scrambled components for diffusion:DNA encoding/decoding,addition operation between components,and XORing with Rossler hyper-chaotic sequences.The simulation results indicate that the suggested encryption algorithm satisfies the requirements of security.The entropy value of confusion and diffusion is 7.997,the key space is 2200,and the correlation coefficient is nearly zero.The efficacy of the proposed method has been verified through numerous evaluations,and the results show its resistance and effectiveness against several attacks,like statistical and brute-force attacks.Finally,the devised algorithm vanquishes other relevant color image encryption algorithms.展开更多
The challenge faced by the visually impaired persons in their day-today lives is to interpret text from documents.In this context,to help these people,the objective of this work is to develop an efficient text recogni...The challenge faced by the visually impaired persons in their day-today lives is to interpret text from documents.In this context,to help these people,the objective of this work is to develop an efficient text recognition system that allows the isolation,the extraction,and the recognition of text in the case of documents having a textured background,a degraded aspect of colors,and of poor quality,and to synthesize it into speech.This system basically consists of three algorithms:a text localization and detection algorithm based on mathematical morphology method(MMM);a text extraction algorithm based on the gamma correction method(GCM);and an optical character recognition(OCR)algorithm for text recognition.A detailed complexity study of the different blocks of this text recognition system has been realized.Following this study,an acceleration of the GCM algorithm(AGCM)is proposed.The AGCM algorithm has reduced the complexity in the text recognition system by 70%and kept the same quality of text recognition as that of the original method.To assist visually impaired persons,a graphical interface of the entire text recognition chain has been developed,allowing the capture of images from a camera,rapid and intuitive visualization of the recognized text from this image,and text-to-speech synthesis.Our text recognition system provides an improvement of 6.8%for the recognition rate and 7.6%for the F-measure relative to GCM and AGCM algorithms.展开更多
Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a...Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.展开更多
Detecting double Joint Photographic Experts Group (JPEG) compressionfor color images is vital in the field of image forensics. In previousresearches, there have been various approaches to detecting double JPEGcompress...Detecting double Joint Photographic Experts Group (JPEG) compressionfor color images is vital in the field of image forensics. In previousresearches, there have been various approaches to detecting double JPEGcompression with different quantization matrices. However, the detectionof double JPEG color images with the same quantization matrix is stilla challenging task. An effective detection approach to extract features isproposed in this paper by combining traditional analysis with ConvolutionalNeural Networks (CNN). On the one hand, the number of nonzero pixels andthe sum of pixel values of color space conversion error are provided with 12-dimensional features through experiments. On the other hand, the roundingerror, the truncation error and the quantization coefficient matrix are used togenerate a total of 128-dimensional features via a specially designed CNN. Insuch aCNN, convolutional layers with fixed kernel of 1×1 and Dropout layersare adopted to prevent overfitting of the model, and an average pooling layeris used to extract local characteristics. In this approach, the Support VectorMachine (SVM) classifier is applied to distinguishwhether a given color imageis primarily or secondarily compressed. The approach is also suitable for thecase when customized needs are considered. The experimental results showthat the proposed approach is more effective than some existing ones whenthe compression quality factors are low.展开更多
The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acqu...The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acquired images. Currently available image defogging methods are mostly suitable for environments with natural light in the daytime, but the clarity of images captured under complex lighting conditions and spatial changes in the presence of fog at night is not satisfactory. This study proposes an algorithm to remove night fog from single images based on an analysis of the statistical characteristics of images in scenes involving night fog. Color channel transfer is designed to compensate for the high attenuation channel of foggy images acquired at night. The distribution of transmittance is estimated by the deep convolutional network DehazeNet, and the spatial variation of atmospheric light is estimated in a point-by-point manner according to the maximum reflection prior to recover the clear image. The results of experiments show that the proposed method can compensate for the high attenuation channel of foggy images at night, remove the effect of glow from a multi-color and non-uniform ambient source of light, and improve the adaptability and visual effect of the removal of night fog from images compared with the conventional method.展开更多
Image processing is becoming more popular because images are being used increasingly in medical diagnosis,biometric monitoring,and character recognition.But these images are frequently contaminated with noise,which ca...Image processing is becoming more popular because images are being used increasingly in medical diagnosis,biometric monitoring,and character recognition.But these images are frequently contaminated with noise,which can corrupt subsequent image processing stages.Therefore,in this paper,we propose a novel nonlinear filter for removing“salt and pepper”impulsive noise from a complex color image.The new filter is called the Modified Vector Directional Filter(MVDF).The suggested method is based on the traditional Vector Directional Filter(VDF).However,before the candidate pixel is processed by the VDF,theMVDF employs a threshold and the neighboring pixels of the candidate pixel in a 3×3 filter window to determine whether it is noise-corrupted or noise-free.Several reference color images corrupted by impulsive noise with intensities ranging from 3%to 20%are used to assess theMVDF’s effectiveness.The results of the experiments show that theMVDF is better than the VDF and the Generalized VDF(GVDF)in terms of the PSNR(Peak Signal-to-Noise Ratio),NCD(Normalized Color Difference),and execution time for the denoised image.In fact,the PSNR is increased by 6.554%and 12.624%,the NCD is decreased by 20.273%and 44.147%,and the execution time is reduced by approximately a factor of 3 for the MVDF relative to the VDF and GVDF,respectively.These results prove the efficiency of the proposed filter.Furthermore,a hardware design is proposed for the MVDF using the High-Level Synthesis(HLS)flow in order to increase its performance.This design,which is implemented on the Xilinx ZynqXCZU9EG Field-ProgrammableGate Array(FPGA),allows the restoration of a 256×256-pixel image in 2 milliseconds(ms)only.展开更多
Biomedical image processing is widely utilized for disease detection and classification of biomedical images.Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at an...Biomedical image processing is widely utilized for disease detection and classification of biomedical images.Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere.For removing the qualitative aspect,tongue images are quantitatively inspected,proposing a novel disease classification model in an automated way is preferable.This article introduces a novel political optimizer with deep learning enabled tongue color image analysis(PODL-TCIA)technique.The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue.To attain this,the PODL-TCIA model initially performs image pre-processing to enhance medical image quality.Followed by,Inception with ResNet-v2 model is employed for feature extraction.Besides,political optimizer(PO)with twin support vector machine(TSVM)model is exploited for image classification process,shows the novelty of the work.The design of PO algorithm assists in the optimal parameter selection of the TSVM model.For ensuring the enhanced outcomes of the PODL-TCIA model,a wide-ranging experimental analysis was applied and the outcomes reported the betterment of the PODL-TCIA model over the recent approaches.展开更多
Background Determining how an image is visually appealing is a complicated and subjective task. This motivates the use of a machine-learning model to evaluate image aesthetics automatically by matching the aesthetics ...Background Determining how an image is visually appealing is a complicated and subjective task. This motivates the use of a machine-learning model to evaluate image aesthetics automatically by matching the aesthetics of the general public. Although deep learning methods have successfully learned good visual features from images,correctly assessing the aesthetic quality of an image remains a challenge for deep learning. Methods To address this, we propose a novel multiview convolutional neural network to assess image aesthetics assessment through color composition and space formation(IAACS). Specifically, from different views of an image––including its key color components and their contributions, the image space formation, and the image itself––our network extracts the corresponding features through our proposed feature extraction module(FET) and the Image Net weight-based classification model. Result By fusing the extracted features, our network produces an accurate prediction score distribution for image aesthetics. The experimental results show that we have achieved superior performance.展开更多
Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle,...Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.展开更多
基金This study was approved by the Medical Ethics Committee of Beijing Tsinghua Changgung Hospital(20002-0-02).
文摘BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a novel high-resolution magnification endoscopy with blue laser imaging(BLI),thus providing a new insight into the microcirculation of early colon tumors.AIM To observe the superficial microcirculation of colorectal adenomas using the novel magnifying colonoscope with BLI and quantitatively analyzed the changes in hemodynamic parameters.METHODS From October 2019 to January 2020,11 patients were screened for colon adenomas with the novel high-resolution magnification endoscope with BLI.Video images were recorded and processed with Adobe Premiere,Adobe Photoshop and Image-pro Plus software.Four microcirculation parameters:Microcirculation vessel density(MVD),mean vessel width(MVW)with width standard deviation(WSD),and blood flow velocity(BFV),were calculated for adenomas and the surrounding normal mucosa.RESULTS A total of 16 adenomas were identified.Compared with the normal surrounding mucosa,the superficial vessel density in the adenomas was decreased(MVD:0.95±0.18 vs 1.17±0.28μm/μm2,P<0.05).MVW(5.11±1.19 vs 4.16±0.76μm,P<0.05)and WSD(11.94±3.44 vs 9.04±3.74,P<0.05)were both increased.BFV slowed in the adenomas(709.74±213.28 vs 1256.51±383.31μm/s,P<0.05).CONCLUSION The novel high-resolution magnification endoscope with BLI can be used for in vivo study of adenoma superficial microcirculation.Superficial vessel density was decreased,more irregular,with slower blood flow.
基金Supported by National Natural Science Foundation of China,No.82071871Guangdong Basic and Applied Basic Research Foundation,No.2021A1515220131+1 种基金Guangdong Medical Science and Technology Research Fund Project,No.2022111520491834Clinical Research Project of Shenzhen Second People's Hospital,No.20223357022。
文摘BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+1 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)。
文摘A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.
基金Supported by The Clinical Innovation Guidance Program of Hunan Provincial Science and Technology Department,China,No.2021SK51714The Hunan Nature Science Foundation,China,No.2023JJ30531.
文摘BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentation of VAD can be heterogeneous,with common symptoms including headache,dizziness and balance problems.Timely diagnosis and treatment are crucial for favorable outcomes;however,VAD is often missed due to its variable clinical presentation and lack of robust diagnostic guidelines.High-resolution magnetic resonance imaging(HRMRI)has emerged as a reliable diagnostic tool for VAD,providing detailed visualization of vessel wall abnormalities.CASE SUMMARY A young male patient presented with an acute onset of severe headache,vomiting,and seizures,followed by altered consciousness.Imaging studies revealed bilateral VAD,basilar artery thrombosis,multiple brainstem and cerebellar infarcts,and subarachnoid hemorrhage.Digital subtraction angiography(DSA)revealed vertebral artery stenosis but failed to detect the dissection,potentially because intramural thrombosis obscured the VAD.In contrast,HRMRI confirmed the diagnosis by revealing specific signs of dissection.The patient was managed conservatively with antiplatelet therapy and other supportive measures,such as blood pressure control and pain management.After 5 mo of rehabilitation,the patient showed significant improvement in swallowing and limb strength.CONCLUSION HR-MRI can provide precise evidence for the identification of VAD.
文摘Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting.A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate(ADR)and the mean number of adenomas per procedure(MAP)of TXI compared with those of white-light imaging(WLI)observation(58.7%vs 42.7%,adjusted relative risk 1.35,95%CI:1.17-1.56;1.36 vs 0.89,adjusted incident risk ratio 1.48,95%CI:1.22-1.80,respectively).A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI(1.5 vs 1.0,adjusted odds ratio 1.4,95%CI:1.2-1.6;58.2%vs 46.8%,1.5,1.0-2.3,respectively).A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure(0.29 vs 0.30,difference for non-inferiority-0.01,95%CI:-0.10 to 0.08).A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis.A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI(0.71%vs 0.29%).A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI(69.2%vs 52.5%and 85.3%vs 78.7%,res-pectively).In conclusion,TXI can improve gastrointestinal lesion detection and qualitative diagnosis.Therefore,further studies on the efficacy of TXI in clinical practice are required.
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)。
文摘For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.
基金supported by the National Natural Science Foundation of China(62276192)。
文摘Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62172268 and 62302289)the Shanghai Science and Technology Project(Grant Nos.21JC1402800 and 23YF1416200)。
文摘As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.
基金funded by Deanship of Scientific Research at King Khalid University under Grant Number R.G.P.2/86/43.
文摘The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.
基金the National Natural Science Foundation of China(Grant No.62061014)the Provincial Natural Science Foundation of Liaoning(Grant No.2020-MS-274)the Basic Scientific Research Projects of Colleges and Universities of Liaoning Province,China(Grant No.LJKZ0545).
文摘We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynamics of hyperchaotic map,a color image encryption scheme is designed.At the end of the encryption process,a DNA mutation operation is used to increase the encoding images’randomness and to improve the encryption algorithm’s security.Finally,simulation experiments,performance analysis,and attack tests are performed to prove the effectiveness and security of the designed algorithm.This work provides the possibility of applying chaos theory and gene theory in image encryption.
基金Foundation of China(No.61902311)funding for this studysupported in part by the Natural Science Foundation of Shaanxi Province in China under Grants 2022JM-508,2022JM-317 and 2019JM-162.
文摘Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis.To overcome the limitations of the color rendering method based on deep learning,such as poor model stability,poor rendering quality,fuzzy boundaries and crossed color boundaries,we propose a novel hinge-cross-entropy generative adversarial network(HCEGAN).The self-attention mechanism was added and improved to focus on the important information of the image.And the hinge-cross-entropy loss function was used to stabilize the training process of GAN models.In this study,we implement the HCEGAN model for image color rendering based on DIV2K and COCO datasets,and evaluate the results using SSIM and PSNR.The experimental results show that the proposed HCEGAN automatically re-renders images,significantly improves the quality of color rendering and greatly improves the stability of prior GAN models.
基金This research is funded by Universiti SainsMalaysia(USM)via an external Grant Number(304/PNAV/650958/U154).
文摘Nowadays,high-resolution images pose several challenges in the context of image encryption.The encryption of huge images’file sizes requires high computational resources.Traditional encryption techniques like,Data Encryption Standard(DES),and Advanced Encryption Standard(AES)are not only inefficient,but also less secure.Due to characteristics of chaos theory,such as periodicity,sensitivity to initial conditions and control parameters,and unpredictability.Hence,the characteristics of deoxyribonucleic acid(DNA),such as vast parallelism and large storage capacity,make it a promising field.This paper presents an efficient color image encryption method utilizing DNA encoding with two types of hyper-chaotic maps.The proposed encryption method comprises three steps.The first step initializes the conditions for generating Lorenz and Rossler hyper-chaotic maps using a plain image Secure Hash Algorithm(SHA-256/384).The second step performs a confusion procedure by scrambling the three components of the image(red,green,and blue)using Lorenz hyper-chaotic sequences.Finally,the third step combines three approaches to encrypt the scrambled components for diffusion:DNA encoding/decoding,addition operation between components,and XORing with Rossler hyper-chaotic sequences.The simulation results indicate that the suggested encryption algorithm satisfies the requirements of security.The entropy value of confusion and diffusion is 7.997,the key space is 2200,and the correlation coefficient is nearly zero.The efficacy of the proposed method has been verified through numerous evaluations,and the results show its resistance and effectiveness against several attacks,like statistical and brute-force attacks.Finally,the devised algorithm vanquishes other relevant color image encryption algorithms.
基金This work was funded by the Deanship of Scientific Research at Jouf University under Grant Number(DSR2022-RG-0114).
文摘The challenge faced by the visually impaired persons in their day-today lives is to interpret text from documents.In this context,to help these people,the objective of this work is to develop an efficient text recognition system that allows the isolation,the extraction,and the recognition of text in the case of documents having a textured background,a degraded aspect of colors,and of poor quality,and to synthesize it into speech.This system basically consists of three algorithms:a text localization and detection algorithm based on mathematical morphology method(MMM);a text extraction algorithm based on the gamma correction method(GCM);and an optical character recognition(OCR)algorithm for text recognition.A detailed complexity study of the different blocks of this text recognition system has been realized.Following this study,an acceleration of the GCM algorithm(AGCM)is proposed.The AGCM algorithm has reduced the complexity in the text recognition system by 70%and kept the same quality of text recognition as that of the original method.To assist visually impaired persons,a graphical interface of the entire text recognition chain has been developed,allowing the capture of images from a camera,rapid and intuitive visualization of the recognized text from this image,and text-to-speech synthesis.Our text recognition system provides an improvement of 6.8%for the recognition rate and 7.6%for the F-measure relative to GCM and AGCM algorithms.
基金the National Natural Science Foundation of China(Grant Nos.51874264 and 52076200)。
文摘Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.
基金Supported by the Fundamental Research Funds for the Central Universities (No.500421126)。
文摘Detecting double Joint Photographic Experts Group (JPEG) compressionfor color images is vital in the field of image forensics. In previousresearches, there have been various approaches to detecting double JPEGcompression with different quantization matrices. However, the detectionof double JPEG color images with the same quantization matrix is stilla challenging task. An effective detection approach to extract features isproposed in this paper by combining traditional analysis with ConvolutionalNeural Networks (CNN). On the one hand, the number of nonzero pixels andthe sum of pixel values of color space conversion error are provided with 12-dimensional features through experiments. On the other hand, the roundingerror, the truncation error and the quantization coefficient matrix are used togenerate a total of 128-dimensional features via a specially designed CNN. Insuch aCNN, convolutional layers with fixed kernel of 1×1 and Dropout layersare adopted to prevent overfitting of the model, and an average pooling layeris used to extract local characteristics. In this approach, the Support VectorMachine (SVM) classifier is applied to distinguishwhether a given color imageis primarily or secondarily compressed. The approach is also suitable for thecase when customized needs are considered. The experimental results showthat the proposed approach is more effective than some existing ones whenthe compression quality factors are low.
基金supported by a grant from the Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (Grant No. GZZKFJJ2020004)the National Natural Science Foundation of China (Grant Nos. 61875013 and 61827814)the Natural Science Foundation of Beijing Municipality (Grant No. Z190018)。
文摘The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acquired images. Currently available image defogging methods are mostly suitable for environments with natural light in the daytime, but the clarity of images captured under complex lighting conditions and spatial changes in the presence of fog at night is not satisfactory. This study proposes an algorithm to remove night fog from single images based on an analysis of the statistical characteristics of images in scenes involving night fog. Color channel transfer is designed to compensate for the high attenuation channel of foggy images acquired at night. The distribution of transmittance is estimated by the deep convolutional network DehazeNet, and the spatial variation of atmospheric light is estimated in a point-by-point manner according to the maximum reflection prior to recover the clear image. The results of experiments show that the proposed method can compensate for the high attenuation channel of foggy images at night, remove the effect of glow from a multi-color and non-uniform ambient source of light, and improve the adaptability and visual effect of the removal of night fog from images compared with the conventional method.
基金funded by the Deanship of Scientific Research at Jouf University (Kingdom of Saudi Arabia)under Grant No.DSR-2021-02-0393.
文摘Image processing is becoming more popular because images are being used increasingly in medical diagnosis,biometric monitoring,and character recognition.But these images are frequently contaminated with noise,which can corrupt subsequent image processing stages.Therefore,in this paper,we propose a novel nonlinear filter for removing“salt and pepper”impulsive noise from a complex color image.The new filter is called the Modified Vector Directional Filter(MVDF).The suggested method is based on the traditional Vector Directional Filter(VDF).However,before the candidate pixel is processed by the VDF,theMVDF employs a threshold and the neighboring pixels of the candidate pixel in a 3×3 filter window to determine whether it is noise-corrupted or noise-free.Several reference color images corrupted by impulsive noise with intensities ranging from 3%to 20%are used to assess theMVDF’s effectiveness.The results of the experiments show that theMVDF is better than the VDF and the Generalized VDF(GVDF)in terms of the PSNR(Peak Signal-to-Noise Ratio),NCD(Normalized Color Difference),and execution time for the denoised image.In fact,the PSNR is increased by 6.554%and 12.624%,the NCD is decreased by 20.273%and 44.147%,and the execution time is reduced by approximately a factor of 3 for the MVDF relative to the VDF and GVDF,respectively.These results prove the efficiency of the proposed filter.Furthermore,a hardware design is proposed for the MVDF using the High-Level Synthesis(HLS)flow in order to increase its performance.This design,which is implemented on the Xilinx ZynqXCZU9EG Field-ProgrammableGate Array(FPGA),allows the restoration of a 256×256-pixel image in 2 milliseconds(ms)only.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/158/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R161)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4340237DSR11).
文摘Biomedical image processing is widely utilized for disease detection and classification of biomedical images.Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere.For removing the qualitative aspect,tongue images are quantitatively inspected,proposing a novel disease classification model in an automated way is preferable.This article introduces a novel political optimizer with deep learning enabled tongue color image analysis(PODL-TCIA)technique.The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue.To attain this,the PODL-TCIA model initially performs image pre-processing to enhance medical image quality.Followed by,Inception with ResNet-v2 model is employed for feature extraction.Besides,political optimizer(PO)with twin support vector machine(TSVM)model is exploited for image classification process,shows the novelty of the work.The design of PO algorithm assists in the optimal parameter selection of the TSVM model.For ensuring the enhanced outcomes of the PODL-TCIA model,a wide-ranging experimental analysis was applied and the outcomes reported the betterment of the PODL-TCIA model over the recent approaches.
基金Supported by the National Key R&D Program of China (No:2018YFB1403202)the National Natural Science Foundation of China(62172366)。
文摘Background Determining how an image is visually appealing is a complicated and subjective task. This motivates the use of a machine-learning model to evaluate image aesthetics automatically by matching the aesthetics of the general public. Although deep learning methods have successfully learned good visual features from images,correctly assessing the aesthetic quality of an image remains a challenge for deep learning. Methods To address this, we propose a novel multiview convolutional neural network to assess image aesthetics assessment through color composition and space formation(IAACS). Specifically, from different views of an image––including its key color components and their contributions, the image space formation, and the image itself––our network extracts the corresponding features through our proposed feature extraction module(FET) and the Image Net weight-based classification model. Result By fusing the extracted features, our network produces an accurate prediction score distribution for image aesthetics. The experimental results show that we have achieved superior performance.
基金financially supported by the National Natural Science Foundation of China(No.51304076)the Natural Science Foundation of Hunan Province,China(No.14JJ4064)
文摘Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.