期刊文献+
共找到331,268篇文章
< 1 2 250 >
每页显示 20 50 100
Monitoring of vegetation coverage based on high-resolution images 被引量:3
1
作者 Zhang Li Li Li-juan +1 位作者 Liang Li-qiao Li Jiu-yi 《Forestry Studies in China》 CAS 2007年第4期256-261,共6页
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin... Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage. 展开更多
关键词 vegetation coverage remote sensing measurement high-resolution image OBJECT-ORIENTATION
下载PDF
Identifying ephemeral gullies from high-resolution images and DEMs using flow-directional detection 被引量:3
2
作者 DAI Wen HU Guang-hui +5 位作者 YANG Xin YANG Xian-wu CHENG Yi-han XIONG Li-yang STROBL Josef TANG Guo-an 《Journal of Mountain Science》 SCIE CSCD 2020年第12期3024-3038,共15页
Ephemeral gullies,which are widely developed worldwide and threaten farmlands,have aroused a growing concern.Identifying and mapping gullies are generally considered prerequisites of gully erosion assessment.However,e... Ephemeral gullies,which are widely developed worldwide and threaten farmlands,have aroused a growing concern.Identifying and mapping gullies are generally considered prerequisites of gully erosion assessment.However,ephemeral gully mapping remains a challenge.In this study,we proposed a flow-directional detection for identifying ephemeral gullies from high-resolution images and digital elevation models(DEMs).Ephemeral gullies exhibit clear linear features in high-resolution images.An edge detection operator was initially used to identify linear features from high-resolution images.Then,according to gully erosion mechanism,the flow-directional detection was designed.Edge images obtained from edge detection and flow directions obtained from DEMs were used to implement the flow-directional detection that detects ephemeral gullies along the flow direction.Results from ten study areas in the Loess Plateau of China showed that ranges of precision,recall,and Fmeasure are 6 o.66%-90.47%,65.74%-94.98%,and63.10%-91.93%,respectively.The proposed method is flexible and can be used with various images and DEMs.However,analysis of the effect of DEM resolution and accuracy showed that DEM resolution only demonstrates a minor effect on the detection results.Conversely,DEM accuracy influences the detection result and is more important than the DEM resolution.The worse the vertical accuracy of DEM,the lower the performance of the flow-directional detection will be.This work is beneficial to research related to monitoring gully erosion and assessing soil loss. 展开更多
关键词 Ephemeral gully mapping Edge detection Flow direction Gully erosion Google Earth image ASTER GDEM
下载PDF
Weakly Supervised Network with Scribble-Supervised and Edge-Mask for Road Extraction from High-Resolution Remote Sensing Images
3
作者 Supeng Yu Fen Huang Chengcheng Fan 《Computers, Materials & Continua》 SCIE EI 2024年第4期549-562,共14页
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human... Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods. 展开更多
关键词 Semantic segmentation road extraction weakly supervised learning scribble supervision remote sensing image
下载PDF
Migration images guided high-resolution velocity modeling based on fully convolutional neural network
4
作者 DU Meng MAO Weijian +1 位作者 YANG Maoxin ZHAO Jianzhi 《Global Geology》 2024年第3期145-153,共9页
Current data-driven deep learning(DL)methods typically reconstruct subsurface velocity models directly from pre-stack seismic records.However,these purely data-driven methods are often less robust and produce results ... Current data-driven deep learning(DL)methods typically reconstruct subsurface velocity models directly from pre-stack seismic records.However,these purely data-driven methods are often less robust and produce results that are less physically interpretative.Here,the authors propose a new method that uses migration images as input,combined with convolutional neural networks to construct high-resolution velocity models.Compared to directly using pre-stack seismic records as input,the nonlinearity between migration images and velocity models is significantly reduced.Additionally,the advantage of using migration images lies in its ability to more comprehensively capture the reflective properties of the subsurface medium,including amplitude and phase information,thereby to provide richer physical information in guiding the reconstruction of the velocity model.This approach not only improves the accuracy and resolution of the reconstructed velocity models,but also enhances the physical interpretability and robustness.Numerical experiments on synthetic data show that the proposed method has superior reconstruction performance and strong generalization capability when dealing with complex geological structures,and shows great potential in providing efficient solutions for the task of reconstructing high-wavenumber components. 展开更多
关键词 deep learning seismic inversion migration imaging velocity modeling
下载PDF
Investigating the relationship between intracranial atherosclerotic plaque remodelling and diabetes using high-resolution vessel wall imaging
5
作者 Yong-Qian Mo Hai-Yu Luo +5 位作者 Han-Wen Zhang Yu-Feng Liu Kan Deng Xiao-Lei Liu Biao Huang Fan Lin 《World Journal of Diabetes》 SCIE 2024年第1期72-80,共9页
BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imag... BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes. 展开更多
关键词 high-resolution vessel wall imaging Intracranial atherosclerosis Vascular remodelling Magnetic resonance imaging
下载PDF
High-resolution magnetic resonance imaging in the diagnosis and management of vertebral artery dissection:A case report
6
作者 Hai-Bin Zhang Yong-Hong Duan +1 位作者 Min Zhou Ri-Chu Liang 《World Journal of Radiology》 2024年第10期593-599,共7页
BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentat... BACKGROUND Vertebral artery dissection(VAD)is a rare but life-threatening condition characterized by tearing of the intimal layer of the vertebral artery,leading to stenosis,occlusion or rupture.The clinical presentation of VAD can be heterogeneous,with common symptoms including headache,dizziness and balance problems.Timely diagnosis and treatment are crucial for favorable outcomes;however,VAD is often missed due to its variable clinical presentation and lack of robust diagnostic guidelines.High-resolution magnetic resonance imaging(HRMRI)has emerged as a reliable diagnostic tool for VAD,providing detailed visualization of vessel wall abnormalities.CASE SUMMARY A young male patient presented with an acute onset of severe headache,vomiting,and seizures,followed by altered consciousness.Imaging studies revealed bilateral VAD,basilar artery thrombosis,multiple brainstem and cerebellar infarcts,and subarachnoid hemorrhage.Digital subtraction angiography(DSA)revealed vertebral artery stenosis but failed to detect the dissection,potentially because intramural thrombosis obscured the VAD.In contrast,HRMRI confirmed the diagnosis by revealing specific signs of dissection.The patient was managed conservatively with antiplatelet therapy and other supportive measures,such as blood pressure control and pain management.After 5 mo of rehabilitation,the patient showed significant improvement in swallowing and limb strength.CONCLUSION HR-MRI can provide precise evidence for the identification of VAD. 展开更多
关键词 Vertebral artery dissection Subarachnoid hemorrhage Brainstem infarction DIAGNOSIS high-resolution magnetic resonance imaging Case report
下载PDF
In vivo pilot study into superficial microcirculatory characteristics of colorectal adenomas using novel high-resolution magnifying endoscopy with blue laser imaging
7
作者 Hai-Bin Dong Tao Chen +2 位作者 Xiao-Fei Zhang Yu-Tang Ren Bo Jiang 《World Journal of Gastrointestinal Endoscopy》 2024年第4期206-213,共8页
BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a n... BACKGROUND No studies have yet been conducted on changes in microcirculatory hemody-namics of colorectal adenomas in vivo under endoscopy.The microcirculation of the colorectal adenoma could be observed in vivo by a novel high-resolution magnification endoscopy with blue laser imaging(BLI),thus providing a new insight into the microcirculation of early colon tumors.AIM To observe the superficial microcirculation of colorectal adenomas using the novel magnifying colonoscope with BLI and quantitatively analyzed the changes in hemodynamic parameters.METHODS From October 2019 to January 2020,11 patients were screened for colon adenomas with the novel high-resolution magnification endoscope with BLI.Video images were recorded and processed with Adobe Premiere,Adobe Photoshop and Image-pro Plus software.Four microcirculation parameters:Microcirculation vessel density(MVD),mean vessel width(MVW)with width standard deviation(WSD),and blood flow velocity(BFV),were calculated for adenomas and the surrounding normal mucosa.RESULTS A total of 16 adenomas were identified.Compared with the normal surrounding mucosa,the superficial vessel density in the adenomas was decreased(MVD:0.95±0.18 vs 1.17±0.28μm/μm2,P<0.05).MVW(5.11±1.19 vs 4.16±0.76μm,P<0.05)and WSD(11.94±3.44 vs 9.04±3.74,P<0.05)were both increased.BFV slowed in the adenomas(709.74±213.28 vs 1256.51±383.31μm/s,P<0.05).CONCLUSION The novel high-resolution magnification endoscope with BLI can be used for in vivo study of adenoma superficial microcirculation.Superficial vessel density was decreased,more irregular,with slower blood flow. 展开更多
关键词 ADENOMA MICROCIRCULATION high-resolution magnification endoscopy Blue laser imaging
下载PDF
Transformer-Based Cloud Detection Method for High-Resolution Remote Sensing Imagery
8
作者 Haotang Tan Song Sun +1 位作者 Tian Cheng Xiyuan Shu 《Computers, Materials & Continua》 SCIE EI 2024年第7期661-678,共18页
Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose ... Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains. 展开更多
关键词 CLOUD TRANSFORMER image segmentation remotely sensed imagery pyramid vision transformer
下载PDF
High-resolution imaging of magnetic fields of banknote anti-counterfeiting strip using fiber diamond probe
9
作者 赵旭彤 何飞越 +5 位作者 薛雅文 马文豪 殷筱晗 夏圣开 曾明菁 杜关祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期720-727,共8页
Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic pr... Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic properties,visualizing its magnetic distribution has been a longstanding challenge.In this work,we introduce an innovative method by using a fiber optic diamond probe,a highly sensitive quantum sensor designed specifically for detecting extremely weak magnetic fields.We employ this probe to achieve high-resolution imaging of the magnetic fields associated with the RMB 50denomination anti-counterfeiting strip.Additionally,we conduct computer simulations by using COMSOL Multiphysics software to deduce the potential geometric characteristics and material composition of the magnetic region within the anti-counterfeiting strip.The findings and method presented in this study hold broader significance,extending the RMB 50 denomination to various denominations of the Chinese currency and other items that employ magnetic anti-counterfeiting strips.These advances have the potential to significantly improve and promote security measures in order to prevent the banknotes from being counterfeited. 展开更多
关键词 banknote anti-counterfeiting strip nitrogen-vacancy(NV)centers magnetic field imaging numerical simulation
下载PDF
Correg-Yolov3:a Method for Dense Buildings Detection in High-resolution Remote Sensing Images 被引量:4
10
作者 Zhanlong CHEN Shuangjiang LI +3 位作者 Yongyang XU Daozhu XU Chao MA Junli ZHAO 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第2期51-61,共11页
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti... The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images. 展开更多
关键词 high resolution remote sensing image Correg-YOLOv3 corner regression dense buildings object detection
下载PDF
Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning
11
作者 Zhen-Hong Shang Si-Yu Mu +1 位作者 Kai-Fan Ji Zhen-Ping Qiang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第6期86-97,共12页
To address the problem of the low accuracy of transverse velocity field measurements for small targets in highresolution solar images,we proposed a novel velocity field measurement method for high-resolution solar ima... To address the problem of the low accuracy of transverse velocity field measurements for small targets in highresolution solar images,we proposed a novel velocity field measurement method for high-resolution solar images based on PWCNet.This method transforms the transverse velocity field measurements into an optical flow field prediction problem.We evaluated the performance of the proposed method using the Hαand TiO data sets obtained from New Vacuum Solar Telescope observations.The experimental results show that our method effectively predicts the optical flow of small targets in images compared with several typical machine-and deeplearning methods.On the Hαdata set,the proposed method improves the image structure similarity from 0.9182 to0.9587 and reduces the mean of residuals from 24.9931 to 15.2818;on the TiO data set,the proposed method improves the image structure similarity from 0.9289 to 0.9628 and reduces the mean of residuals from 25.9908 to17.0194.The optical flow predicted using the proposed method can provide accurate data for the atmospheric motion information of solar images.The code implementing the proposed method is available on https://github.com/lygmsy123/transverse-velocity-field-measurement. 展开更多
关键词 methods:data analysis techniques:image processing Sun:fundamental parameters
下载PDF
Using restored two-dimensional X-ray images to reconstruct the three-dimensional magnetopause 被引量:2
12
作者 RongCong Wang JiaQi Wang +3 位作者 DaLin Li TianRan Sun XiaoDong Peng YiHong Guo 《Earth and Planetary Physics》 EI CSCD 2024年第1期133-154,共22页
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph... Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) soft X-ray imager MAGNETOPAUSE image restoration
下载PDF
Background removal from global auroral images:Data-driven dayglow modeling 被引量:1
13
作者 A.Ohma M.Madelaire +4 位作者 K.M.Laundal J.P.Reistad S.M.Hatch S.Gasparini S.J.Walker 《Earth and Planetary Physics》 EI CSCD 2024年第1期247-257,共11页
Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but... Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission. 展开更多
关键词 AURORA dayglow modeling global auroral images far ultraviolet images dayglow removal
下载PDF
Deep learning-based inpainting of saturation artifacts in optical coherence tomography images 被引量:2
14
作者 Muyun Hu Zhuoqun Yuan +2 位作者 Di Yang Jingzhu Zhao Yanmei Liang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期1-10,共10页
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ... Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness. 展开更多
关键词 Optical coherence tomography saturation artifacts deep learning image inpainting.
下载PDF
Artificial Intelligence and Computer Vision during Surgery: Discussing Laparoscopic Images with ChatGPT4—Preliminary Results 被引量:1
15
作者 Savvas Hirides Petros Hirides +1 位作者 Kouloufakou Kalliopi Constantinos Hirides 《Surgical Science》 2024年第3期169-181,共13页
Introduction: Ultrafast latest developments in artificial intelligence (ΑΙ) have recently multiplied concerns regarding the future of robotic autonomy in surgery. However, the literature on the topic is still scarce... Introduction: Ultrafast latest developments in artificial intelligence (ΑΙ) have recently multiplied concerns regarding the future of robotic autonomy in surgery. However, the literature on the topic is still scarce. Aim: To test a novel AI commercially available tool for image analysis on a series of laparoscopic scenes. Methods: The research tools included OPENAI CHATGPT 4.0 with its corresponding image recognition plugin which was fed with a list of 100 laparoscopic selected snapshots from common surgical procedures. In order to score reliability of received responses from image-recognition bot, two corresponding scales were developed ranging from 0 - 5. The set of images was divided into two groups: unlabeled (Group A) and labeled (Group B), and according to the type of surgical procedure or image resolution. Results: AI was able to recognize correctly the context of surgical-related images in 97% of its reports. For the labeled surgical pictures, the image-processing bot scored 3.95/5 (79%), whilst for the unlabeled, it scored 2.905/5 (58.1%). Phases of the procedure were commented in detail, after all successful interpretations. With rates 4 - 5/5, the chatbot was able to talk in detail about the indications, contraindications, stages, instrumentation, complications and outcome rates of the operation discussed. Conclusion: Interaction between surgeon and chatbot appears to be an interesting frontend for further research by clinicians in parallel with evolution of its complex underlying infrastructure. In this early phase of using artificial intelligence for image recognition in surgery, no safe conclusions can be drawn by small cohorts with commercially available software. Further development of medically-oriented AI software and clinical world awareness are expected to bring fruitful information on the topic in the years to come. 展开更多
关键词 Artificial Intelligence SURGERY image Recognition Autonomous Surgery
下载PDF
Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer 被引量:1
16
作者 Changfeng Feng Chunping Wang +2 位作者 Dongdong Zhang Renke Kou Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3993-4013,共21页
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman... Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection. 展开更多
关键词 UAV images TRANSFORMER dense small object detection
下载PDF
DeepSVDNet:A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images 被引量:1
17
作者 Anas Bilal Azhar Imran +4 位作者 Talha Imtiaz Baig Xiaowen Liu Haixia Long Abdulkareem Alzahrani Muhammad Shafiq 《Computer Systems Science & Engineering》 2024年第2期511-528,共18页
Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR ... Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection. 展开更多
关键词 Diabetic retinopathy(DR) fundus images(FIs) support vector machine(SVM) medical image analysis convolutional neural networks(CNN) singular value decomposition(SVD) classification
下载PDF
Reconstruction of Knowledge and Medical Images in the Convergence of Chinese and Western Medicine:Taking “Sweet Meat” as an Example 被引量:1
18
作者 GU Xiaoyang 《Chinese Medicine and Culture》 2024年第3期204-212,共9页
The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started... The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started translating and introducing anatomical and physiological knowledge about the pancreas.As for the word pancreas,an early and influential translation was “sweet meat”(甜肉),proposed by Benjamin Hobson(合信).The translation “sweet meat” is not faithful to the original meaning of “pancreas”,but is a term coined by Hobson based on his personal habits,and the word “sweet” appeared by chance.However,in the decades since the term “sweet meat” became popular,Chinese medicine practitioners,such as Tang Zonghai(唐宗海),reinterpreted it by drawing new medical illustrations for “sweet meat” and giving new connotations to the word “sweet”.This discussion and interpretation of “sweet meat” in modern China,particularly among Chinese medicine professionals,is not only a dissemination and interpretation of the knowledge of “pancreas”,but also a construction of knowledge around the term “sweet meat”. 展开更多
关键词 Medical terminology Sweet meat Medical missionaries PANCREAS History of images
下载PDF
Verification and Validation of High-Resolution Inviscid and Viscous Conical Nozzle Flows
19
作者 Luciano K.Araki Rafael B.de R.Borges +1 位作者 Nicholas Dicati P.da Silva Chi-Wang Shu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期533-549,共17页
Capturing elaborated flow structures and phenomena is required for well-solved numerical flows.The finite difference methods allow simple discretization of mesh and model equations.However,they need simpler meshes,e.g... Capturing elaborated flow structures and phenomena is required for well-solved numerical flows.The finite difference methods allow simple discretization of mesh and model equations.However,they need simpler meshes,e.g.,rectangular.The inverse Lax-Wendroff(ILW)procedure can handle complex geometries for rectangular meshes.High-resolution and high-order methods can capture elaborated flow structures and phenomena.They also have strong mathematical and physical backgrounds,such as positivity-preserving,jump conditions,and wave propagation concepts.We perceive an effort toward direct numerical simulation,for instance,regarding weighted essentially non-oscillatory(WENO)schemes.Thus,we propose to solve a challenging engineering application without turbulence models.We aim to verify and validate recent high-resolution and high-order methods.To check the solver accuracy,we solved vortex and Couette flows.Then,we solved inviscid and viscous nozzle flows for a conical profile.We employed the finite difference method,positivity-preserving Lax-Friedrichs splitting,high-resolution viscous terms discretization,fifth-order multi-resolution WENO,ILW,and third-order strong stability preserving Runge-Kutta.We showed the solver is high-order and captured elaborated flow structures and phenomena.One can see oblique shocks in both nozzle flows.In the viscous flow,we also captured a free-shock separation,recirculation,entrainment region,Mach disk,and the diamond-shaped pattern of nozzle flows. 展开更多
关键词 high-resolution COMPRESSIBLE NAVIER-STOKES Free-shock separation Nozzle flow
下载PDF
Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features 被引量:1
20
作者 Asifa Mehmood Qureshi Naif Al Mudawi +2 位作者 Mohammed Alonazi Samia Allaoua Chelloug Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2024年第3期3683-3701,共19页
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit... Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved. 展开更多
关键词 Unmanned Aerial Vehicles(UAV) aerial images DATASET object detection object tracking data elimination template matching blob detection SIFT VAID
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部