The development of the construction sector is rapidly growing,which induce competition at global level.In order to achieve the current economic development,more high-rise buildings construction projects were commenced...The development of the construction sector is rapidly growing,which induce competition at global level.In order to achieve the current economic development,more high-rise buildings construction projects were commenced without considering importance of the land to human and other living organism.On the other hand,the quality and safety aspect of the engineering technology used must be analyzed carefully and to be the primary aim for engineers to reduce any risk of harm in future.Many of the high-rise buildings in China consist of a frame or skeleton of reinforced concrete wall which need to be strengthened with shear walls to improve the stability and safety of the structures.According to practical work experience and relevant theoretical knowledge,the researcher introduced the reinforcement construction technology of frame-shear wall for high-rise buildings in depth from aspects like the arrangement of steel bar,construction preparation,steel bar anchorage,precautions to follow for the related work in future.展开更多
In order to solve the problem of poor thermal insulation in the current wood-plastic building,two kinds of structural wood wall integrated with wood plastic composite(WPC)are designed,and the thermal insulation perfor...In order to solve the problem of poor thermal insulation in the current wood-plastic building,two kinds of structural wood wall integrated with wood plastic composite(WPC)are designed,and the thermal insulation performances of the walls are studied.The results show that the WPC integrated wall with frame-shear structure has a good stability,and the excellent performance of the WPC can be fully realized.Wall studs and wall panels are important factors affecting the thermal performance of the walls.Wood plastic materials can meet the thermal performance requirements of the walls.The single-layer frame walls and double-layer frame walls integrated with the WPC both have a good thermal performance.According to‘Design Standard for Energy Efficiency of Public Buildings(GB 50189-2015)’,the heat transfer coefficient of the single-layer frame wall integrated with 20 mm thick WPC wall boards and WPC wall studs is 0.414 W/(m^(2)•K),which can meet the standard of wall thermal levelⅡt and is suitable for cold areas.The heat transfer coefficient of the double-layer frame wall integrated with 50 mm thick WPC wall panel and WPC wall studs is 0.207 W/(m^(2)•K),which can meet the standard of wall thermal levelⅠt and is suitable for severe cold areas.展开更多
Post-tensioning self-centering walls are a well-developed and resilient technology.However,despite extensive research,the application of this technology has previously been limited to low-rise buildings.A ten-story se...Post-tensioning self-centering walls are a well-developed and resilient technology.However,despite extensive research,the application of this technology has previously been limited to low-rise buildings.A ten-story selfcentering wall building has now been designed and constructed using the state-of-art design methodologies and construction detailing,as described in this paper.The building is designed in accordance with direct displacement-based design methodology,with modification of seismic demand due to relevant issues including higher-mode effects,second order effects,torsional effects,and flexural deformation of wall panels.Wall sections are designed with external energydissipating devices of steel dampers,and seismic performance of such designed self-centering walls is evaluated through numerical simulation.It is the first engineering project that uses self-centering walls in a high-rise building.The seismic design procedure of such a high-rise building,using self-centering wall structures,is comprehensively reviewed in this work,and additional proposals are put forward.Description of construction detailing,including slotted beams,flexible wall-to-floor connections,embedded beams,and damper installation,is provided.The demonstration project promotes the concept of seismic resilient structures and contributes to the most appealing city planning strategy of resilient cities at present.The paper could be a reference for industry engineers to promote the self-centering wall systems worldwide.展开更多
Current building design codes allow the appearance of structural and nonstructural damage under design basis earthquakes.The research regarding probabilistic seismic loss estimation in domestic building structure is u...Current building design codes allow the appearance of structural and nonstructural damage under design basis earthquakes.The research regarding probabilistic seismic loss estimation in domestic building structure is urgent.The evaluation in this paper is based on a 11-story reinforced concrete office building,incremental dynamic analysis(IDA)is conducted in Perform 3D program using models capable to simulate all possible limit states up to collapse.Next,the probability distribution of post-earthquake casualties,rebuild costs repair costs and business downtime loss are calculated in PACT software for the studied building considering the modified component vulnerability groups and population flow models.The evaluation procedure can also shed light on other types of buildings in China.For non-typical functional building structures,this article proposes to build a finite element model of structural components and to classify the vulnerability groups based on the construction drawings,and to supply and improve the vulnerability library of appendages in FEMA P-58 according to the actual situation.In this way,the application scope of building seismic performance evaluation can be expanded.展开更多
文摘The development of the construction sector is rapidly growing,which induce competition at global level.In order to achieve the current economic development,more high-rise buildings construction projects were commenced without considering importance of the land to human and other living organism.On the other hand,the quality and safety aspect of the engineering technology used must be analyzed carefully and to be the primary aim for engineers to reduce any risk of harm in future.Many of the high-rise buildings in China consist of a frame or skeleton of reinforced concrete wall which need to be strengthened with shear walls to improve the stability and safety of the structures.According to practical work experience and relevant theoretical knowledge,the researcher introduced the reinforcement construction technology of frame-shear wall for high-rise buildings in depth from aspects like the arrangement of steel bar,construction preparation,steel bar anchorage,precautions to follow for the related work in future.
文摘In order to solve the problem of poor thermal insulation in the current wood-plastic building,two kinds of structural wood wall integrated with wood plastic composite(WPC)are designed,and the thermal insulation performances of the walls are studied.The results show that the WPC integrated wall with frame-shear structure has a good stability,and the excellent performance of the WPC can be fully realized.Wall studs and wall panels are important factors affecting the thermal performance of the walls.Wood plastic materials can meet the thermal performance requirements of the walls.The single-layer frame walls and double-layer frame walls integrated with the WPC both have a good thermal performance.According to‘Design Standard for Energy Efficiency of Public Buildings(GB 50189-2015)’,the heat transfer coefficient of the single-layer frame wall integrated with 20 mm thick WPC wall boards and WPC wall studs is 0.414 W/(m^(2)•K),which can meet the standard of wall thermal levelⅡt and is suitable for cold areas.The heat transfer coefficient of the double-layer frame wall integrated with 50 mm thick WPC wall panel and WPC wall studs is 0.207 W/(m^(2)•K),which can meet the standard of wall thermal levelⅠt and is suitable for severe cold areas.
基金the Distinguished Young Scientists Fund of National Natural Science Foundation of China(Grant No.52025083)the technical support of Shanghai CITI-RAISE Construction Group.
文摘Post-tensioning self-centering walls are a well-developed and resilient technology.However,despite extensive research,the application of this technology has previously been limited to low-rise buildings.A ten-story selfcentering wall building has now been designed and constructed using the state-of-art design methodologies and construction detailing,as described in this paper.The building is designed in accordance with direct displacement-based design methodology,with modification of seismic demand due to relevant issues including higher-mode effects,second order effects,torsional effects,and flexural deformation of wall panels.Wall sections are designed with external energydissipating devices of steel dampers,and seismic performance of such designed self-centering walls is evaluated through numerical simulation.It is the first engineering project that uses self-centering walls in a high-rise building.The seismic design procedure of such a high-rise building,using self-centering wall structures,is comprehensively reviewed in this work,and additional proposals are put forward.Description of construction detailing,including slotted beams,flexible wall-to-floor connections,embedded beams,and damper installation,is provided.The demonstration project promotes the concept of seismic resilient structures and contributes to the most appealing city planning strategy of resilient cities at present.The paper could be a reference for industry engineers to promote the self-centering wall systems worldwide.
基金This research has been supported by the National Natural ScienceFoundation of China (Grant No. 51778135 )the Natural Science Foundation of JiangsuProvince (Grant No. BK20160207)+1 种基金Aeronautical Science Foundation of China (GrantNo. 20130969010)the Fundamental Research Funds for the Central Universities andPostgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No.KYCX18_0113 and KYLX16_0253).
文摘Current building design codes allow the appearance of structural and nonstructural damage under design basis earthquakes.The research regarding probabilistic seismic loss estimation in domestic building structure is urgent.The evaluation in this paper is based on a 11-story reinforced concrete office building,incremental dynamic analysis(IDA)is conducted in Perform 3D program using models capable to simulate all possible limit states up to collapse.Next,the probability distribution of post-earthquake casualties,rebuild costs repair costs and business downtime loss are calculated in PACT software for the studied building considering the modified component vulnerability groups and population flow models.The evaluation procedure can also shed light on other types of buildings in China.For non-typical functional building structures,this article proposes to build a finite element model of structural components and to classify the vulnerability groups based on the construction drawings,and to supply and improve the vulnerability library of appendages in FEMA P-58 according to the actual situation.In this way,the application scope of building seismic performance evaluation can be expanded.