A new strategy using an arnperometric biosensor with Escherichia coli (E. coli) that provides a rapid toxicity determination of chemical compounds is described. The CellSense biosensor system comprises a biological ...A new strategy using an arnperometric biosensor with Escherichia coli (E. coli) that provides a rapid toxicity determination of chemical compounds is described. The CellSense biosensor system comprises a biological component immobilized in intimate contact with a transducer which converts the biochemical signal into a quantifiable electrical signal. Toxicity assessment of heavy metals using E.coli biosensors could be finished within 30 min and the 50% effective concentrations (ECso) values of four heavy metals were determined. The results shows that inhibitory effects of four heavy metals to E.coli can be ranked in a decreasing order of Hg^2+ 〉 Cu^2+ 〉 Zn^2+ 〉 Ni^2+, which accords to the results of conventional bacterial counting method. The toxicity test of organic compounds by using CellSense biosensor was also demonstrated. The CellSense biosensor with E. coli shows a good, reproducible behavior and can be used for reproducible measurements.展开更多
Response of two wheat cultivars (Triticum aestivum cv. YM 158 and NM 9) to the herbicide chlorotoluron and the effect of two forms of dissolved organic matter on the chlorotoluron toxicity to the plants were charact...Response of two wheat cultivars (Triticum aestivum cv. YM 158 and NM 9) to the herbicide chlorotoluron and the effect of two forms of dissolved organic matter on the chlorotoluron toxicity to the plants were characterized. Treatment with chlorotoluron at 10-50 μg/ml inhibited the seed germination and a dose-response was observed. The inhibition of seed germination was correlated to the depression of a-amylase activities. To identify whether chlorotoluron induced oxidative damage to wheat plants, the malondlaldehyde (MDA) content and electrolyte leakage were measured. Results showed that both MDA content and electrolyte leakage in the chlorotoluron-treated roots significantly increased. Activities of several key enzymes were measured that operate in citric acid cycle and carbohydrate metabolic pathway. Inhibited activities of citrate synthase and NADP-isocitrate dehydrogenase were observed in the chlorotoluron-treated roots as compared to control plants. We also examined malate dehydrogenase and phosphoenolpyruvate carboxylase in wheat roots exposed to 30 μg/ml chlorotoluron, liowever, none of the enzymes showed significant changes in activities. Application of 160 μg/ml dissolved organic matter (DOM) extracted from non-treated sludge(NTS) and heat-expanded sludge (lIES) in the medium with 30 μg/ml chlorotoluron induced an additive inhibition of seed germination and plant growth. The inhibition of growth due to the DOM treatment was associated with the depression of activities of a-amylase, citrate synthase and NADP-isocitrate dehydrogenase, as well as the increase in malondlaldehyde content and electrolyte leakage. These results suggested that the presence of DOM might enhance the uptake and accumulation of chlorotoluron, and thus resulted in greater toxicity in wheat plants. The two forms of DOM exhibited differences in regulation of chlorotoluron toxicity to the wheat plants. Treatments with DOM-NTS induced greater toxicity to plants as compared to those with DOM-HES. In addition to DOM affecting chlorotoluron-induced toxicity to wheat plants, the cultivars could have also contributed to differences. Generally, NM-9 showed a higher sensitivity to chlorotoluron than YM 158 either in the absence or in the presence of DOM.展开更多
It is particularly important to comprehensively assess the biotoxicity variation of industrial wastewater along the treatment process for ensuring the water environment security.However,intensive studies on the biotox...It is particularly important to comprehensively assess the biotoxicity variation of industrial wastewater along the treatment process for ensuring the water environment security.However,intensive studies on the biotoxicity reduction of industrial wastewater are still limited.In this study,the toxic organics removal and biotoxicity reduction of coal chemical wastewater(CCW)along a novel full-scale treatment process based on the pretreatment process-anaerobic process-biological enhanced(BE)process-anoxic/oxic(A/O)process-advanced treatment process was evaluated.This process performed great removal efficiency of COD,total phenol,NH_(4)^(+)-N and total nitrogen.And the biotoxicity variation along the treatment units was analyzed from the perspective of acute biotoxicity,genotixicity and oxidative damage.The results indicated that the effluent of pretreatment process presented relatively high acute biotoxicity to Tetrahymena thermophila.But the acute biotoxicity was significantly reduced in BE-A/O process.And the genotoxicity and oxidative damage to Tetrahymena thermophila were significantly decreased after advanced treatment.The polar organics in CCW were identified as the main biotoxicity contributors.Phenols were positively correlated with acute biotoxicity,while the nitrogenous heterocyclic compounds and polycyclic aromatic hydrocarbons were positively correlated with genotoxicity.Although the biotoxicity was effectively reduced in the novel full-scale treatment process,the effluent still performed potential biotoxicity,which need to be further explored in order to reduce environmental risk.展开更多
The experiment was conducted with the objective of studies on effects of zinc toxicity on lymphoid organs by the methods of experimental pathology and flow cytometry (FCM). 200 one-day-old Avian broilers were divide...The experiment was conducted with the objective of studies on effects of zinc toxicity on lymphoid organs by the methods of experimental pathology and flow cytometry (FCM). 200 one-day-old Avian broilers were divided into four groups randomly, and fed on diets as follows: controls (Zn 100 mg kg-1)and zinc toxic (Zn 1 500 mg kg-1, zinc toxic group Ⅰ; Zn 2 000 mg kg-1, zinc toxic groupⅡ; Zn 2 500 mg kg-1, zinc toxic group Ⅲ) for seven weeks. The weight and growth index of the thymus, spleen and bursa of Fabricius were reduced in both zinc toxic groupⅡand zinc toxic group Ⅲ when compared with those of control group. The G0/G1 phase of the cell cycles of the lymphoid organs was higher, and S, G2+M phases lower in zinc toxic groups Ⅱand Ⅲ than in control group. Lymphocytes were depleted and degenerate in the lymphoid organs. The reticular cells of the bursa of Fabricius proliferated and the reticular cells of the thymus were also degenerate and necrotic, particularly in zinc toxic groups Ⅱand Ⅲ. The results demonstrated that more than 1 500 mg kg-1 impaired the progression of lymphocytes from the G0/Gl phase to S phase obviously, inhibited the development of lymphoid organs and caused marked pathological changes in the lymphoid organs. Potential mechanisms underlying these observations are also discussed.展开更多
one-day-old Tianfu meat ducklings were divided into three groups, and fed on dietsas follows:(1)control (Cu 12.16 mg kg-1),(2) copper toxicⅠ(Cu 850 mg kg-1) and (3)copper toxicⅡ( Cu 1050 mg kg-1) for studies on effe...one-day-old Tianfu meat ducklings were divided into three groups, and fed on dietsas follows:(1)control (Cu 12.16 mg kg-1),(2) copper toxicⅠ(Cu 850 mg kg-1) and (3)copper toxicⅡ( Cu 1050 mg kg-1) for studies on effects of copper toxicity on lymphoidorgans in duckling with the methods of experimental pathology and flow cytometry (FCM).The weight and growth index of the thymus, spleen and bursa of Fabricius were markedlyreduced (P<0.05 or P<0.01) in both copper toxic groupⅠand Cu toxic group Ⅱ whencompared with control group. The G0/G1 phase of the cell cycle of the thymus, spleen andbursa of Fabricius was much higher, and S, G2+M phases lower in Cu toxic groupsⅠand Ⅱthan in the control group. There were lymphocyte degeneration and depletion of lymphoidorgans, and the reticular cells of spleen and bursa of Fabricius proliferated and thereticular cells of thymus were also degenerate and necrotic in Cu toxic groups. Theresults demonstrated that Cu toxicity seriously impaired the progression of lymphocytesfrom the G0/G1 phase to S phase, inhibited the development of lymphoid organs and causedmarked pathological injury in lymphoid organs. The results also showed that the effectof Cu toxicity on the primary lymphoid organs occurred stronger than on the secondarylymphoid organs. The effect of Cu toxicity was the greatest on the bursa of Fabricius,followed by the thymus, and then the spleen. Potential mechanisms underlying aforementionedobservation were also discussed.展开更多
The experiment was conducted to examine the effect of copper toxicity on lymphoid organs by experimental pathology andflow cytometry (FCM). 180 one-day-old Avian broilers were divided into three groups, and fed diets ...The experiment was conducted to examine the effect of copper toxicity on lymphoid organs by experimental pathology andflow cytometry (FCM). 180 one-day-old Avian broilers were divided into three groups, and fed diets as follows: 1) Control(Cu 11.97 mg kg-1 diet), 2) Cu- toxic groupⅠ(Cu 650 mg kg-1) and 3) Cu- toxic groupⅡ(Cu 850 mg kg-1) for six weeks.Compared with the control, the growth index of the thymus, spleen and bursa of Fabricius were markedly reduced (P<0.05or P<0.01), the G0/G1 phase of cell cycles of the thymus, spleen and bursa of Fabricius was higher (P<0.05 or P<0.01), whilethe S phase and proliferating index were lower (P<0.05 or P<0.01) in both Cu-toxic group Ⅰ and Cu-toxic group Ⅱ. Theresults demonstrated that Cu toxicity seriously impaired the progression of lymphocytes from the G0/G1 phase to the Sphase, inhibited the growth and development of lymphoid organs.展开更多
A new method for generating reactive species to destroy toxic organic chemicals has been developed. This method reacts yellow phosphorus with O_2, in moist air to produce species such as O,O_3, PO, and PO_2, which are...A new method for generating reactive species to destroy toxic organic chemicals has been developed. This method reacts yellow phosphorus with O_2, in moist air to produce species such as O,O_3, PO, and PO_2, which are capable of reacting with various types of organics. Toxic organic com-pounds are converted to small molecular wight organic acids, aldehydes, and/or alcohols, while yel-low phosphonis is oxidital into phosphoric acid, which may be recovered as a valuable byproduct.This technique has ben demonstrated to be effective for destroying many types of toxic organiccompounds. including PAH, aromatic chlorides, amines, alcohols, and acids, nitro-aromatics,heterocyclic hydrocarbons, PCB, aliphatic chlorides and sulfides, dyes, and pesticides.展开更多
A new molecular structural characterization(MSC)method called molecular vertexes correlative index(MVCI)was constructed in this paper.The index was used to describe the structures of 45 compounds and a quantitativ...A new molecular structural characterization(MSC)method called molecular vertexes correlative index(MVCI)was constructed in this paper.The index was used to describe the structures of 45 compounds and a quantitative structure-activity relationship(QSAR)model of toxicity(–lgEC50)was obtained through multiple linear regression(MLR)and stepwise multiple regression(SMR).The correlation coefficient(R)of the model was 0.912,and the standard deviation(SD)of the model was 0.525.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The Leave-One-Out(LOO)Cross-Validation(CV)correlation coefficient(RCV)was 0.816 and the standard deviation(SDCV)was 0.739,respectively.For the external validation,the correlation coefficient(Rtest)was 0.905 and the standard deviation(SDtest)was 0.520,respectively.The results showed that the index was superior in molecular structural representation.The stability and predictability of the model were good.展开更多
OMGKRP is one of various Karuho poison mysteriously used by unscrupulous individuals to kill people during conflict and animals in Goma City, in DRC. The symptoms and signs of most cases are usually confused with many...OMGKRP is one of various Karuho poison mysteriously used by unscrupulous individuals to kill people during conflict and animals in Goma City, in DRC. The symptoms and signs of most cases are usually confused with many chronic diseases like tuberculosis and HIV/AIDS;with renal, hepatic and cardiac manifestations as well as blood chemistry changes. The study investigated the toxic effect of OMGKRP poison on blood chemistry, serum enzymes and organ toxicity including the kidney, lung, liver and heart of Wistar albino rats. A laboratory-based experimental study was conducted. Fifty animals in 5 groups each with 10 animals were dosed daily for 28 days with 1.0 mg, 5.0 mg, 20.0 mg and 5000.0 mg/Kg body weight of OMGKRP and normal saline as control group. International standard guidelines, OECD 407 and NIH 2011 were followed during the study period. The blood chemistry analysis, relative organ weight and histopathological changes in the kidney, lung, liver and heart were performed. The findings showed that OMGKRP was associated with increased blood chemistry parameters including total proteins, creatinine, urea, K+?levels, direct albumin levels, a decrease in Cl−?levels and albumin levels. Histopathological findings showed an increased relative weight and tissue damages of the lung, kidney, liver and heart. Therefore, OMGKRP Karuho poison caused toxicity on blood chemistry, serum enzymes as well as histopathological changes in the lung, renal, hepatic and cardiac tissue damages in Wistar albino rats.展开更多
In our previous study,we prepared the granules by embedding artemisinin into alginate-chitosan using microcapsule technology.These granules can release artemisinin sustainably and have a strong inhibitory effect on th...In our previous study,we prepared the granules by embedding artemisinin into alginate-chitosan using microcapsule technology.These granules can release artemisinin sustainably and have a strong inhibitory effect on the growth of both single Microcystis aeruginosa and mixed algae.To safely and effectively use artemisinin sustained-release granules to control algal blooms,the ecotoxicity was studied by assessing their acute and chronic toxicity to Daphnia magna(D.magna)and Danio rerio(D.rerio),along with their antioxidant activities.The results showed that the 48-h median effective concentration(EC50)of pure artemisinin to D.magna was 24.54 mg/L and the 96-h median lethal concentration(LC50)of pure artemisinin to D.rerio was 68.08 mg/L.Both values were classified as intermediate toxicity according to the Organization for Economic Co-operation and Development(OECD).The optimal algae inhibitory concentration of artemisinin sustained-release granules(1 g/L)had low acute toxicity to both D.magna and D.rerio.The sustained-release granules had higher chronic toxicity to D.magna than to D.rerio.Partial indices of D.magna were inhibited by granules when the concentrations were larger than 0.1 g/L.Low granule concentration had an inductive effect on antioxidant enzyme activities in D.magna and D.rerio.With the increase of the exposure concentration and time,the enzyme activity presented a trend of first increasing and then decreasing,and the overall changes were significant.The change trend and range of enzyme activity indicated that the granules could cause serious oxidative stress to D.magna and D.rerio,and the changes were consistent with the results of toxicity experimentation.展开更多
Acute toxicity of 0.3 ppm mercuric chloride on the mucocytes of the branchial diverticulum and skin of Heteropneustes fossilis results in cyclic increases followed by decreases in the density, area occupancy and volum...Acute toxicity of 0.3 ppm mercuric chloride on the mucocytes of the branchial diverticulum and skin of Heteropneustes fossilis results in cyclic increases followed by decreases in the density, area occupancy and volume at different intervals of exposure. The alterations in the two tissues do not follow the same path perhaps due to different modes of action of the mercury salt: The skin comes under direct contact effects, while the branchial diverticulum may be affected by hormonal imbalance caused by a stress effect.展开更多
Metal–organic framework-based compounds have recently gained great attention because of their unique porous structure,ordered porosity,and high specific surface area.Benefiting from these superior properties,metal–o...Metal–organic framework-based compounds have recently gained great attention because of their unique porous structure,ordered porosity,and high specific surface area.Benefiting from these superior properties,metal–organic framework-based compounds have been proven to be one of the most potential candidates for environmental governance and remediation.In this review,the different types of metal–organic framework-based compounds are first summarized.Further,the various environmental applications of metal–organic framework-based compounds including organic pollutant removal,toxic and hazardous gas capture,heavy metal ion detection,gas separation,water harvesting,air purification,and carbon dioxide reduction reactions are discussed in detail.In the end,the opportunities and challenges for the future development of metal–organic framework-based compounds for environmental applications are highlighted.展开更多
基金supported by the National Natural Science Foundation of China(No.20707014)the Program for Young Excellent Talents of Tongji University.
文摘A new strategy using an arnperometric biosensor with Escherichia coli (E. coli) that provides a rapid toxicity determination of chemical compounds is described. The CellSense biosensor system comprises a biological component immobilized in intimate contact with a transducer which converts the biochemical signal into a quantifiable electrical signal. Toxicity assessment of heavy metals using E.coli biosensors could be finished within 30 min and the 50% effective concentrations (ECso) values of four heavy metals were determined. The results shows that inhibitory effects of four heavy metals to E.coli can be ranked in a decreasing order of Hg^2+ 〉 Cu^2+ 〉 Zn^2+ 〉 Ni^2+, which accords to the results of conventional bacterial counting method. The toxicity test of organic compounds by using CellSense biosensor was also demonstrated. The CellSense biosensor with E. coli shows a good, reproducible behavior and can be used for reproducible measurements.
基金The National Natural Science Foundation of China(30170537)
文摘Response of two wheat cultivars (Triticum aestivum cv. YM 158 and NM 9) to the herbicide chlorotoluron and the effect of two forms of dissolved organic matter on the chlorotoluron toxicity to the plants were characterized. Treatment with chlorotoluron at 10-50 μg/ml inhibited the seed germination and a dose-response was observed. The inhibition of seed germination was correlated to the depression of a-amylase activities. To identify whether chlorotoluron induced oxidative damage to wheat plants, the malondlaldehyde (MDA) content and electrolyte leakage were measured. Results showed that both MDA content and electrolyte leakage in the chlorotoluron-treated roots significantly increased. Activities of several key enzymes were measured that operate in citric acid cycle and carbohydrate metabolic pathway. Inhibited activities of citrate synthase and NADP-isocitrate dehydrogenase were observed in the chlorotoluron-treated roots as compared to control plants. We also examined malate dehydrogenase and phosphoenolpyruvate carboxylase in wheat roots exposed to 30 μg/ml chlorotoluron, liowever, none of the enzymes showed significant changes in activities. Application of 160 μg/ml dissolved organic matter (DOM) extracted from non-treated sludge(NTS) and heat-expanded sludge (lIES) in the medium with 30 μg/ml chlorotoluron induced an additive inhibition of seed germination and plant growth. The inhibition of growth due to the DOM treatment was associated with the depression of activities of a-amylase, citrate synthase and NADP-isocitrate dehydrogenase, as well as the increase in malondlaldehyde content and electrolyte leakage. These results suggested that the presence of DOM might enhance the uptake and accumulation of chlorotoluron, and thus resulted in greater toxicity in wheat plants. The two forms of DOM exhibited differences in regulation of chlorotoluron toxicity to the wheat plants. Treatments with DOM-NTS induced greater toxicity to plants as compared to those with DOM-HES. In addition to DOM affecting chlorotoluron-induced toxicity to wheat plants, the cultivars could have also contributed to differences. Generally, NM-9 showed a higher sensitivity to chlorotoluron than YM 158 either in the absence or in the presence of DOM.
基金supported by the Natural Science Foundation of Shandong Province,China(No.ZR2021QE227)the Natural Science Foundation of Shandong Province,China(No.ZR2021QE272)+1 种基金the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.ES202120)the Taishan Scholars Program of Shandong Province,China(No.tsqn201812091)。
文摘It is particularly important to comprehensively assess the biotoxicity variation of industrial wastewater along the treatment process for ensuring the water environment security.However,intensive studies on the biotoxicity reduction of industrial wastewater are still limited.In this study,the toxic organics removal and biotoxicity reduction of coal chemical wastewater(CCW)along a novel full-scale treatment process based on the pretreatment process-anaerobic process-biological enhanced(BE)process-anoxic/oxic(A/O)process-advanced treatment process was evaluated.This process performed great removal efficiency of COD,total phenol,NH_(4)^(+)-N and total nitrogen.And the biotoxicity variation along the treatment units was analyzed from the perspective of acute biotoxicity,genotixicity and oxidative damage.The results indicated that the effluent of pretreatment process presented relatively high acute biotoxicity to Tetrahymena thermophila.But the acute biotoxicity was significantly reduced in BE-A/O process.And the genotoxicity and oxidative damage to Tetrahymena thermophila were significantly decreased after advanced treatment.The polar organics in CCW were identified as the main biotoxicity contributors.Phenols were positively correlated with acute biotoxicity,while the nitrogenous heterocyclic compounds and polycyclic aromatic hydrocarbons were positively correlated with genotoxicity.Although the biotoxicity was effectively reduced in the novel full-scale treatment process,the effluent still performed potential biotoxicity,which need to be further explored in order to reduce environmental risk.
基金The study was supported by the National Natu-ral Science Foundation of China(30471304)the Per sonnel Depar tment and Education Department of Sichuan Province,China.
文摘The experiment was conducted with the objective of studies on effects of zinc toxicity on lymphoid organs by the methods of experimental pathology and flow cytometry (FCM). 200 one-day-old Avian broilers were divided into four groups randomly, and fed on diets as follows: controls (Zn 100 mg kg-1)and zinc toxic (Zn 1 500 mg kg-1, zinc toxic group Ⅰ; Zn 2 000 mg kg-1, zinc toxic groupⅡ; Zn 2 500 mg kg-1, zinc toxic group Ⅲ) for seven weeks. The weight and growth index of the thymus, spleen and bursa of Fabricius were reduced in both zinc toxic groupⅡand zinc toxic group Ⅲ when compared with those of control group. The G0/G1 phase of the cell cycles of the lymphoid organs was higher, and S, G2+M phases lower in zinc toxic groups Ⅱand Ⅲ than in control group. Lymphocytes were depleted and degenerate in the lymphoid organs. The reticular cells of the bursa of Fabricius proliferated and the reticular cells of the thymus were also degenerate and necrotic, particularly in zinc toxic groups Ⅱand Ⅲ. The results demonstrated that more than 1 500 mg kg-1 impaired the progression of lymphocytes from the G0/Gl phase to S phase obviously, inhibited the development of lymphoid organs and caused marked pathological changes in the lymphoid organs. Potential mechanisms underlying these observations are also discussed.
文摘one-day-old Tianfu meat ducklings were divided into three groups, and fed on dietsas follows:(1)control (Cu 12.16 mg kg-1),(2) copper toxicⅠ(Cu 850 mg kg-1) and (3)copper toxicⅡ( Cu 1050 mg kg-1) for studies on effects of copper toxicity on lymphoidorgans in duckling with the methods of experimental pathology and flow cytometry (FCM).The weight and growth index of the thymus, spleen and bursa of Fabricius were markedlyreduced (P<0.05 or P<0.01) in both copper toxic groupⅠand Cu toxic group Ⅱ whencompared with control group. The G0/G1 phase of the cell cycle of the thymus, spleen andbursa of Fabricius was much higher, and S, G2+M phases lower in Cu toxic groupsⅠand Ⅱthan in the control group. There were lymphocyte degeneration and depletion of lymphoidorgans, and the reticular cells of spleen and bursa of Fabricius proliferated and thereticular cells of thymus were also degenerate and necrotic in Cu toxic groups. Theresults demonstrated that Cu toxicity seriously impaired the progression of lymphocytesfrom the G0/G1 phase to S phase, inhibited the development of lymphoid organs and causedmarked pathological injury in lymphoid organs. The results also showed that the effectof Cu toxicity on the primary lymphoid organs occurred stronger than on the secondarylymphoid organs. The effect of Cu toxicity was the greatest on the bursa of Fabricius,followed by the thymus, and then the spleen. Potential mechanisms underlying aforementionedobservation were also discussed.
基金The study was supported by the National Natural Sci-ence Foundation of China (30471304) the Educa-tion Department of Sichuan Province of China (143-[1998]).
文摘The experiment was conducted to examine the effect of copper toxicity on lymphoid organs by experimental pathology andflow cytometry (FCM). 180 one-day-old Avian broilers were divided into three groups, and fed diets as follows: 1) Control(Cu 11.97 mg kg-1 diet), 2) Cu- toxic groupⅠ(Cu 650 mg kg-1) and 3) Cu- toxic groupⅡ(Cu 850 mg kg-1) for six weeks.Compared with the control, the growth index of the thymus, spleen and bursa of Fabricius were markedly reduced (P<0.05or P<0.01), the G0/G1 phase of cell cycles of the thymus, spleen and bursa of Fabricius was higher (P<0.05 or P<0.01), whilethe S phase and proliferating index were lower (P<0.05 or P<0.01) in both Cu-toxic group Ⅰ and Cu-toxic group Ⅱ. Theresults demonstrated that Cu toxicity seriously impaired the progression of lymphocytes from the G0/G1 phase to the Sphase, inhibited the growth and development of lymphoid organs.
文摘A new method for generating reactive species to destroy toxic organic chemicals has been developed. This method reacts yellow phosphorus with O_2, in moist air to produce species such as O,O_3, PO, and PO_2, which are capable of reacting with various types of organics. Toxic organic com-pounds are converted to small molecular wight organic acids, aldehydes, and/or alcohols, while yel-low phosphonis is oxidital into phosphoric acid, which may be recovered as a valuable byproduct.This technique has ben demonstrated to be effective for destroying many types of toxic organiccompounds. including PAH, aromatic chlorides, amines, alcohols, and acids, nitro-aromatics,heterocyclic hydrocarbons, PCB, aliphatic chlorides and sulfides, dyes, and pesticides.
基金supported by the Foundation of Education Bureau,Sichuan Province (09ZB036)Technology Bureau,Sichuan Province (2006j13-141)
文摘A new molecular structural characterization(MSC)method called molecular vertexes correlative index(MVCI)was constructed in this paper.The index was used to describe the structures of 45 compounds and a quantitative structure-activity relationship(QSAR)model of toxicity(–lgEC50)was obtained through multiple linear regression(MLR)and stepwise multiple regression(SMR).The correlation coefficient(R)of the model was 0.912,and the standard deviation(SD)of the model was 0.525.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The Leave-One-Out(LOO)Cross-Validation(CV)correlation coefficient(RCV)was 0.816 and the standard deviation(SDCV)was 0.739,respectively.For the external validation,the correlation coefficient(Rtest)was 0.905 and the standard deviation(SDtest)was 0.520,respectively.The results showed that the index was superior in molecular structural representation.The stability and predictability of the model were good.
文摘OMGKRP is one of various Karuho poison mysteriously used by unscrupulous individuals to kill people during conflict and animals in Goma City, in DRC. The symptoms and signs of most cases are usually confused with many chronic diseases like tuberculosis and HIV/AIDS;with renal, hepatic and cardiac manifestations as well as blood chemistry changes. The study investigated the toxic effect of OMGKRP poison on blood chemistry, serum enzymes and organ toxicity including the kidney, lung, liver and heart of Wistar albino rats. A laboratory-based experimental study was conducted. Fifty animals in 5 groups each with 10 animals were dosed daily for 28 days with 1.0 mg, 5.0 mg, 20.0 mg and 5000.0 mg/Kg body weight of OMGKRP and normal saline as control group. International standard guidelines, OECD 407 and NIH 2011 were followed during the study period. The blood chemistry analysis, relative organ weight and histopathological changes in the kidney, lung, liver and heart were performed. The findings showed that OMGKRP was associated with increased blood chemistry parameters including total proteins, creatinine, urea, K+?levels, direct albumin levels, a decrease in Cl−?levels and albumin levels. Histopathological findings showed an increased relative weight and tissue damages of the lung, kidney, liver and heart. Therefore, OMGKRP Karuho poison caused toxicity on blood chemistry, serum enzymes as well as histopathological changes in the lung, renal, hepatic and cardiac tissue damages in Wistar albino rats.
基金supported by the National Natural Science Foundation of China(Grants No.91647206 and 51779079)the Program for Changjiang Scholars and Innovative Research Team at Hohai University(Grant No.IRT13061)+1 种基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP).
文摘In our previous study,we prepared the granules by embedding artemisinin into alginate-chitosan using microcapsule technology.These granules can release artemisinin sustainably and have a strong inhibitory effect on the growth of both single Microcystis aeruginosa and mixed algae.To safely and effectively use artemisinin sustained-release granules to control algal blooms,the ecotoxicity was studied by assessing their acute and chronic toxicity to Daphnia magna(D.magna)and Danio rerio(D.rerio),along with their antioxidant activities.The results showed that the 48-h median effective concentration(EC50)of pure artemisinin to D.magna was 24.54 mg/L and the 96-h median lethal concentration(LC50)of pure artemisinin to D.rerio was 68.08 mg/L.Both values were classified as intermediate toxicity according to the Organization for Economic Co-operation and Development(OECD).The optimal algae inhibitory concentration of artemisinin sustained-release granules(1 g/L)had low acute toxicity to both D.magna and D.rerio.The sustained-release granules had higher chronic toxicity to D.magna than to D.rerio.Partial indices of D.magna were inhibited by granules when the concentrations were larger than 0.1 g/L.Low granule concentration had an inductive effect on antioxidant enzyme activities in D.magna and D.rerio.With the increase of the exposure concentration and time,the enzyme activity presented a trend of first increasing and then decreasing,and the overall changes were significant.The change trend and range of enzyme activity indicated that the granules could cause serious oxidative stress to D.magna and D.rerio,and the changes were consistent with the results of toxicity experimentation.
文摘Acute toxicity of 0.3 ppm mercuric chloride on the mucocytes of the branchial diverticulum and skin of Heteropneustes fossilis results in cyclic increases followed by decreases in the density, area occupancy and volume at different intervals of exposure. The alterations in the two tissues do not follow the same path perhaps due to different modes of action of the mercury salt: The skin comes under direct contact effects, while the branchial diverticulum may be affected by hormonal imbalance caused by a stress effect.
基金supported by the National Natural Science Foundation of China(NSFC-U1904215,21671170)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP).
文摘Metal–organic framework-based compounds have recently gained great attention because of their unique porous structure,ordered porosity,and high specific surface area.Benefiting from these superior properties,metal–organic framework-based compounds have been proven to be one of the most potential candidates for environmental governance and remediation.In this review,the different types of metal–organic framework-based compounds are first summarized.Further,the various environmental applications of metal–organic framework-based compounds including organic pollutant removal,toxic and hazardous gas capture,heavy metal ion detection,gas separation,water harvesting,air purification,and carbon dioxide reduction reactions are discussed in detail.In the end,the opportunities and challenges for the future development of metal–organic framework-based compounds for environmental applications are highlighted.