We prepare oligothymonucleic acid (OTA) functionalized polyethylene (PE) film and evaluate its selective removal ability of mercury ions at ultra-low levels in aqueous solution. The selective binding of OTA with mercu...We prepare oligothymonucleic acid (OTA) functionalized polyethylene (PE) film and evaluate its selective removal ability of mercury ions at ultra-low levels in aqueous solution. The selective binding of OTA with mercury ions is confirmed by fluorescence in situ hybridization (FISH). The quantitative results via cold-vapor atomic fluorescence spectrometry (CVAFS) indicate that OTA-functionalized PE film is able to remove mercury ions at the sub-ppb level selectively from aqueous solution, even with the coexistence of other metal ions at concentrations 250-fold or higher than that of mercury.展开更多
Photocatalytic conversion of biomass is considered an effective,clean,and environmentally friendly route to obtain high-valued chemicals and hydrogen.However,the limited conversion efficiency and poor selectivity are ...Photocatalytic conversion of biomass is considered an effective,clean,and environmentally friendly route to obtain high-valued chemicals and hydrogen.However,the limited conversion efficiency and poor selectivity are still the main bottlenecks for photocatalytic biomass conversion.Herein,we report the highly selective photocatalytic conversion of glucose solution on holosymmetrically spherical three-dimensionally ordered macroporous TiO_(2)-CdSe heterojunction photonic crystal structure(s-TCS).The obtained s-TCS photocatalysts show excellent stability and strong light harvesting,uniform mass diffusion and exchange,and efficient photogenerated electrons/holes separation and utilization.The optimized s-TCS-4 photocatalyst displays the highest photocatalytic performance for glucose oxidation and hydrogen production.The glucose conversion,lactic acid selectivity,and yield on s-TCS-4 are about 95.9%,94.3%,and 96.4%,respectively.The photocatalytic production of lactic acid for s-TCS-4(18.5 g/L)is 2.3 times higher than the pure spherical TiO_(2) photonic crystal without CdSe(s-TiO_(2),8.1 g/L),and the hydrogen production rate of s-TCS-4 is 9.4 times that of s-TiO_(2).For the first time,we reveal that the photocatalytic conversion of glucose to lactic acid is a third-order and four-electron-involved reaction.This work could shed some new light on the efficient photocatalysis conversion of biomass to highly value-added products with high selectivity and yield,and simultaneously sustainable hydrogen evolution.展开更多
基金supported by National Natural Science Foundation of China(11175234, 11105210)the Knowledge Innovation Program of the Chinese Academy of Sciences (XDA02040300, KJCX2-YW-N49)Shanghai Municipal Commission for Science and Technology (10ZR1436700,11ZR1445400)
文摘We prepare oligothymonucleic acid (OTA) functionalized polyethylene (PE) film and evaluate its selective removal ability of mercury ions at ultra-low levels in aqueous solution. The selective binding of OTA with mercury ions is confirmed by fluorescence in situ hybridization (FISH). The quantitative results via cold-vapor atomic fluorescence spectrometry (CVAFS) indicate that OTA-functionalized PE film is able to remove mercury ions at the sub-ppb level selectively from aqueous solution, even with the coexistence of other metal ions at concentrations 250-fold or higher than that of mercury.
基金supported by the National Key R&D Program of China(grant nos.2016YFA0202602 and 2021YFE0115800)National Natural Science Foundation of China(grant nos.21805220,U20A20122,and 52103285)+3 种基金Program of Introducing Talents of Discipline to Universities-Plan 111 from the Ministry of Science and Technology and the Ministry of Education of China(grant no.B20002)Natural Science Foundation of Hubei Province(grant nos.2020CFB416,2018CFB242,and 2018CFA054)the Fundamental Research Funds for the Central Universities(WUT:grant no.2021III016GX)Youth Innovation Research Fund project and the Open Fund Project of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing。
文摘Photocatalytic conversion of biomass is considered an effective,clean,and environmentally friendly route to obtain high-valued chemicals and hydrogen.However,the limited conversion efficiency and poor selectivity are still the main bottlenecks for photocatalytic biomass conversion.Herein,we report the highly selective photocatalytic conversion of glucose solution on holosymmetrically spherical three-dimensionally ordered macroporous TiO_(2)-CdSe heterojunction photonic crystal structure(s-TCS).The obtained s-TCS photocatalysts show excellent stability and strong light harvesting,uniform mass diffusion and exchange,and efficient photogenerated electrons/holes separation and utilization.The optimized s-TCS-4 photocatalyst displays the highest photocatalytic performance for glucose oxidation and hydrogen production.The glucose conversion,lactic acid selectivity,and yield on s-TCS-4 are about 95.9%,94.3%,and 96.4%,respectively.The photocatalytic production of lactic acid for s-TCS-4(18.5 g/L)is 2.3 times higher than the pure spherical TiO_(2) photonic crystal without CdSe(s-TiO_(2),8.1 g/L),and the hydrogen production rate of s-TCS-4 is 9.4 times that of s-TiO_(2).For the first time,we reveal that the photocatalytic conversion of glucose to lactic acid is a third-order and four-electron-involved reaction.This work could shed some new light on the efficient photocatalysis conversion of biomass to highly value-added products with high selectivity and yield,and simultaneously sustainable hydrogen evolution.