A metal-insulator-metal(MIM)-based arc-shaped resonator coupled with a rectangular stub(MARS) structure is proposed. This structure can generate two tunable Fano resonances originating from two different mechanisms. T...A metal-insulator-metal(MIM)-based arc-shaped resonator coupled with a rectangular stub(MARS) structure is proposed. This structure can generate two tunable Fano resonances originating from two different mechanisms. The structure has the advantage of being sensitive to the refractive index, and this feature makes it favorable for application in various microsensors. The relationship between the structural parameters and Fano resonance is researched using the finite element method(FEM) based on the software COMSOL Multiphysics 5.4. The simulation reveals that the sensitivity reaches1900 nm/refractive index unit(RIU), and the figure of merit(FOM) is 23.75.展开更多
Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit ...Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.展开更多
We propose a side-core holey fiber (SCHF)-based surface plasmon resonance (SPR) sensor to achieve high refractive index (RI) sensitivity. The SCHF structure can facilitate analyte filling and enhance the overlap...We propose a side-core holey fiber (SCHF)-based surface plasmon resonance (SPR) sensor to achieve high refractive index (RI) sensitivity. The SCHF structure can facilitate analyte filling and enhance the overlapping area of the core mode and surface plasmon polariton (SPP) mode. The coupling properties of the sensor are analyzed by numerical simulation. The maximum sensitivity of 5000 nm/RIU in an RI range of 1.33-1.44, and the average sensitivity of 9295 nm/RIU in an RI range from 1.44 to 1.54 can be obtained.展开更多
It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In t...It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.展开更多
An effective refractive index sensor built with square lattice photonic crystal is proposed,which can be applicable to photonic integrated circuits.Two photonic crystal waveguides rather than conventional ridge wavegu...An effective refractive index sensor built with square lattice photonic crystal is proposed,which can be applicable to photonic integrated circuits.Two photonic crystal waveguides rather than conventional ridge waveguides are used as entrance/exit waveguides to the micro-cavity.Three layers of photonic lattice are set between the photonic crystal waveguides and the micro-cavity to achieve both a high transmission and a high sensitivity.The plane wave method is utilized to calculate the disperse curves and the finite difference time domain scheme is employed to simulate the light propagation.At the resonant wavelength of about 1500 nm,the resonant wavelength shifts up by 0.7 nm for each increment of Δn=0.001.A transmission of more than 0.75 is observed.Although the position disorder of the photonic crystal doesn't affect the sensitivity of the sensor, the transmission reduces rapidly as the disorder increases.展开更多
We propose a two-dimensional metal grating with rhombus particles on a gold film structure for refractive index sensing due to its perfect absorption at near-infrared wavelength.Via two-dimensional metal grating coupl...We propose a two-dimensional metal grating with rhombus particles on a gold film structure for refractive index sensing due to its perfect absorption at near-infrared wavelength.Via two-dimensional metal grating coupling,the incident light energy is effectively transformed into the surface plasmons which propagate along the upper surface of the gold film and interact with the surrounding environment in a wide range.The plasmonic resonance mechanism of the structure is discussed in detail by theoretical analysis and finite-difference time-domain method.After optimizing the geometrical parameters,the designed structure shows the sensing performance with a refractive index sensitivity of 1006 nm/RIU.More importantly,this plasmonic refractive index sensor achieves an ultra wide refractive index sensing range from 1.0 to 2.4 with a stable sensing performance.The promising simulation results of the structure show that the sensor has a broad application prospect in the field of biology and chemistry.展开更多
A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing ...A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.展开更多
A plasmonic resonator system consisting of a metal–insulator–metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are ...A plasmonic resonator system consisting of a metal–insulator–metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are investigated by using the finite difference in time domain(FDTD) method, and the simulation results contain two resonant dips. The physical mechanism is studied by the multimode interference coupled mode theory(MICMT), and the theoretical results are in highly consistent with the simulation results. Furthermore, the parameters of the Q-shaped cavity can be controlled to adjust the two dips, respectively. The refractive index sensor proposed in this paper, with a sensitivity of 1578 nm/RIU and figure of merit(FOM) of 175, performs better than most of the similar structures. Therefore, the results of the study are instructive for the design and application of high sensitivity nanoscale refractive index sensors.展开更多
To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium ...To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium niobate waveguide. The system configuration and the principle of the method are analyzed and some experimental results are given out. Both the experimental result and simulation show that this method is simple, rapid and of sufficient precision.展开更多
Photonic crystal fiber (PCF) is employed as a refractive index sensor (RIS) for solving a lot of problems in biological, physicochemical, medical, engineering fields and many environmental challenges, where it is used...Photonic crystal fiber (PCF) is employed as a refractive index sensor (RIS) for solving a lot of problems in biological, physicochemical, medical, engineering fields and many environmental challenges, where it is used in many industries of food, medicines, chemical materials and material diagnosis. The kind of the PCFs was HC-1550 with three wavelengths of laser source were used;638 nm, 850 nm, and 1550 nm that are useful for recording the intended transmitted signal intensity. Therefore, the measured RI was in the range (1.469 - 1.455 RIU) at the temperature range (36 - 70)°C for the EBBA and it was (1.621 - 1.612 RIU) at the temperature range (22 - 42)°C for the MBBA. The results showed that the highest RI sensitivity was 96.335 dBm/RIU for the HC-1550 infiltrated with MBBA using the laser of wavelength 638 nm, Also, the highest temperature sensitivity was 0.2505 dBm/°C for empty HC-1550 using the laser of wavelength 1550 nm.展开更多
We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SM...We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SMF with the same tilt angle,and then excites two sets of superposed spectral combs of cladding modes.The cascaded TFBG with total length of 18 mm has a much wider wavelength range over 100 nm and narrower wavelength separation than that of a TFBG only in the SMF,enabling an enlarged range and a higher accuracy of refractive index measurement.The fabricated TFBG with the merits of enhanced sensing capability and temperature self-calibration presents great potentials in the biochemical sensing applications.展开更多
Many experimental investigations on the temperature dependence of the refractive index of optical fibers have been reported previously, however a satisfying theoretical explanation for it is still absent. In this pape...Many experimental investigations on the temperature dependence of the refractive index of optical fibers have been reported previously, however a satisfying theoretical explanation for it is still absent. In this paper, a theoretical model about the temperature dependence of the refractive index of optical fibers is presented and it is in agreement with the previous experimental results. This work is a significant reference for the research and development of temperature sensors based on optical fiber delay lines.展开更多
A new structure of the photonic crystal fiber(PCF)based Mach-Zednder interferometer(MZI)is fabricated and presented.The structure has microholes ablated by a femtosecond laser.The fringe visibility can be enhanced...A new structure of the photonic crystal fiber(PCF)based Mach-Zednder interferometer(MZI)is fabricated and presented.The structure has microholes ablated by a femtosecond laser.The fringe visibility can be enhanced more than 10 dB compared with the interferometer without a microhole.The interferometer is characterized by sodium chloride solutions for refractive index(RI)sensing.The RI sensitivities are greatly increased by the hole fabrication since it directly changes the cladding modes of the PCF.For the interferometer sensor with two holes,the RI sensitivity is 157.74 nm/RIU,which is 5 times than that of the sensor without a microhole.Microholes ablation with a femtosecond laser on PCF can increase the sensor's sensitivity dramatically.Femtosecond laser has a wide application prospect in the field of performance improvement of the sensors.展开更多
The terahertz(THz)wave is at the intersection between photonics and electronics in the electromagnetic spectrum.Since the vibration mode of many biomedical molecules and the weak interaction mode inside the molecules ...The terahertz(THz)wave is at the intersection between photonics and electronics in the electromagnetic spectrum.Since the vibration mode of many biomedical molecules and the weak interaction mode inside the molecules fall in the THz regime,utilizing THz radiation as a signal source to operate substance information sensing has its unique advantages.Recently,the metamaterial sensor(metasensor)has greatly enhanced the interaction between signal and substances and spectral selectivity on the subwavelength scale.However,most past review articles have demonstrated the THz metasensor in terms of their structures,applications,or materials.Until recently,with the rapid development of metasensing technologies,the molecular information has paid much more attention to the platform of THz metasensors.In this review,we comprehensively introduce the THz metasensor for detecting not only the featureless refractive index but also the vibrational/chiral molecular information of analytes.The objectives of this review are to improve metasensing specificity either by chemical material-assisted analyte capture or by physical molecular information.Later,to boost THz absorption features in a certain frequency,the resonant responses of metasensors can be tuned to the molecular vibrational modes of target molecules,while frequency multiplexing techniques are reviewed to enhance broadband THz spectroscopic fingerprints.The chiral metasensors are also summarized to specific identification chiral molecules.Finally,the potential prospects of next generation THz metasensors are discussed.Compared to featureless refractive index metasensing,the specific metasensor platforms accelerated by material modification and molecular information will lead to greater impact in the advancement of trace detection of conformational dynamics of biomolecules in practical applications.展开更多
In this paper,a new concept of forward-pumped random Raman fiber laser(RRFL)-based liquid refractive index sensing is proposed for the first time.For liquid refractive index sensing,the flat fiber end immersed in the ...In this paper,a new concept of forward-pumped random Raman fiber laser(RRFL)-based liquid refractive index sensing is proposed for the first time.For liquid refractive index sensing,the flat fiber end immersed in the liquid can act as the point reflector for generating random fiber lasing and also as the sensing head.Due to the high sensitivity of the output power of the RRFL to the reflectivity provided by the point reflector in the ultralow reflectivity regime,the proposed RRFL is capable of achieving liquid refractive index sensing by measuring the random lasing output power.We theoretically investigate the effects of the operating pump power and fiber length on the refractive index sensitivity for the proposed RRFL.As a proof-of-concept demonstration,we experimentally realize high-sensitivity half-open short-cavity RRFL-based liquid refractive index sensing with the maximum sensitivity and the sensing resolution of-39.88W/RIU and 2.5075×10^(-5) RIU,respectively.We also experimentally verify that the refractive index sensitivity can be enhanced with the shorter fiber length of the RRFL.This work extends the application of the random fiber laser as a new platform for highly-sensitive refractive index sensing in chemical,biomedical,and environmental monitoring applications,etc.展开更多
The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refrac...The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refractive index with optical fiber plasma wave. We make use of this characteristic to manufacture the plasma resonance fiber optic sensor which can detect the cure of epoxy compo site. We study the method of testing the solutions which have different refractive index with plasma resonance fiber optic sensor. A fiber optic sensing probe which has reliable performance and convenient operation for detecting the refractive index has been designed. The system for detecting the solution refractive index is developed and used to measure the refractive index of epoxy during the different phases in the cure process. Result shows that this system is credible and stable, the parameters tested are in accord with the facts.展开更多
Recently, many programs have been developed for simulation or analysis of the different parameters of light propagation in optical fibers, either for sensing or for communication purposes. In this paper, it is shown t...Recently, many programs have been developed for simulation or analysis of the different parameters of light propagation in optical fibers, either for sensing or for communication purposes. In this paper, it is shown the COMSOL Multiphysics as a fairly robust and simple program, due to the existence of a graphical environment, to perform simulations with good accuracy. Results are compared with other simulation analysis, focusing on the surface plasmon resonance (SPR) phenomena for refractive index sensing in a D-type optical fiber, where the characteristics of the material layers, in terms of the type and thickness, and the residual fiber cladding thickness are optimized.展开更多
In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fi...In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fiber and multimode fiber,according to the singlemode multimode singlemode sequence to fuse together,and the fused optical fiber is used to process the taper.As a result,the diameter of the sensing head is about 10μm.Experimental results show that,as liquid refractive index increases range from 1.33 to 1.35,the loss peak of the transmission spectrum will shift to long wave direction.展开更多
Optical fibers have been widely applied to telecommunication,imaging,lasers,and sensing.Among the different types of fibers,photonic crystal fibers(PCFs),also called microstructured optical fibers,characterized by air...Optical fibers have been widely applied to telecommunication,imaging,lasers,and sensing.Among the different types of fibers,photonic crystal fibers(PCFs),also called microstructured optical fibers,characterized by air holes arranged along the length of fibers have experienced tremendous advance due to their unique advantages.They are regarded as a desirable platform to excite surface plasmon resonance(SPR)because of easy realization of phase matching conditions between the fundamental core mode and the plasmonic mode,which plays a critical role in miniaturization and integration of SPR sensors.In this mini-review,the current status of PCF sensors based on SPR is summarized.The theory of SPR is discussed,and simulation methods for PCF-SPR sensors are described.The important parameters including the refractive index detection range,resonance wavelength,and spectral sensitivity responsible for the sensing properties of PCF-SPR sensors are reviewed.The fabrication and the comparison of performances are also illustrated,and,finally,the challenges and future perspectives are outlined.展开更多
A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by t...A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by the finite element method (FEM). For the interaction of the narrow-band spectral response and the broadband spectral response caused by the side-coupled resonators and the rectangular resonator, respectively, the transmission spectra exhibit a sharp and asymmetric profile. Results are analyzed using the coupled-mode theory based on the transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity (S) as high as 1160 nm/RIU, and the corresponding sensing resolution is 8.62 × 10 -5 RIU. In addition, the coupled MIM waveguide structure can be easily extended to other similar compact structures to realize the sensing task and integrated with other photonic devices at the chip scale. This work paves the way toward the sensitive nanometer scale refractive index sensor for design and application.展开更多
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 61875250 and 61975189)the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LD21F050001 and Y21F040001)+3 种基金the Key Research Project by Department of Water Resources of Zhejiang Province (Grant No. RA2101)the Key Research and Development Project of Zhejiang Province (Grant No. 2021C03019)the Key R&D Projects of Shanxi Province (Grant Nos. 201903D421032 and 01804D131038)the Scientific Research Foundation of Zhejiang University of Water Resources and Electric Power (Grant No. xky2022032)。
文摘A metal-insulator-metal(MIM)-based arc-shaped resonator coupled with a rectangular stub(MARS) structure is proposed. This structure can generate two tunable Fano resonances originating from two different mechanisms. The structure has the advantage of being sensitive to the refractive index, and this feature makes it favorable for application in various microsensors. The relationship between the structural parameters and Fano resonance is researched using the finite element method(FEM) based on the software COMSOL Multiphysics 5.4. The simulation reveals that the sensitivity reaches1900 nm/refractive index unit(RIU), and the figure of merit(FOM) is 23.75.
基金Project supported by the National Natural Science Foundation of China (Grant No.12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology (Grant No.YK22-02-08)+2 种基金the Qing Lan Project of Jiangsu Provincethe Natural Science Foundation of Jiangsu Province of China (Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China (Grant No.ZK21-05-09)。
文摘Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.
基金Project supported by the Major Projects of the National Natural Science Foundation of China(Grant No.61290315)the National Natural Science Foundation of China(Grant No.61340057)the Special Program of the National Modern Service Industrial Development Foundation of China(Grant No.[2012]14)
文摘We propose a side-core holey fiber (SCHF)-based surface plasmon resonance (SPR) sensor to achieve high refractive index (RI) sensitivity. The SCHF structure can facilitate analyte filling and enhance the overlapping area of the core mode and surface plasmon polariton (SPP) mode. The coupling properties of the sensor are analyzed by numerical simulation. The maximum sensitivity of 5000 nm/RIU in an RI range of 1.33-1.44, and the average sensitivity of 9295 nm/RIU in an RI range from 1.44 to 1.54 can be obtained.
文摘It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.
基金supported by the National Natural Science Foundation of China under Grant No.0475048.
文摘An effective refractive index sensor built with square lattice photonic crystal is proposed,which can be applicable to photonic integrated circuits.Two photonic crystal waveguides rather than conventional ridge waveguides are used as entrance/exit waveguides to the micro-cavity.Three layers of photonic lattice are set between the photonic crystal waveguides and the micro-cavity to achieve both a high transmission and a high sensitivity.The plane wave method is utilized to calculate the disperse curves and the finite difference time domain scheme is employed to simulate the light propagation.At the resonant wavelength of about 1500 nm,the resonant wavelength shifts up by 0.7 nm for each increment of Δn=0.001.A transmission of more than 0.75 is observed.Although the position disorder of the photonic crystal doesn't affect the sensitivity of the sensor, the transmission reduces rapidly as the disorder increases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61865008 and 61505074)the HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology.
文摘We propose a two-dimensional metal grating with rhombus particles on a gold film structure for refractive index sensing due to its perfect absorption at near-infrared wavelength.Via two-dimensional metal grating coupling,the incident light energy is effectively transformed into the surface plasmons which propagate along the upper surface of the gold film and interact with the surrounding environment in a wide range.The plasmonic resonance mechanism of the structure is discussed in detail by theoretical analysis and finite-difference time-domain method.After optimizing the geometrical parameters,the designed structure shows the sensing performance with a refractive index sensitivity of 1006 nm/RIU.More importantly,this plasmonic refractive index sensor achieves an ultra wide refractive index sensing range from 1.0 to 2.4 with a stable sensing performance.The promising simulation results of the structure show that the sensor has a broad application prospect in the field of biology and chemistry.
基金Project supported by the Natural Science Foundation of China (Grant Nos.62075107,61935006,62090064,and62090065)K.C.Wong Magna Fund in Ningbo University。
文摘A novel method for designing chalcogenide long-period fiber grating(LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point(PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.
基金supported by the National Natural Science Foundation of China (Grant No. 61865008)Northwest Normal University Young Teachers’ Scientific Research Capability Upgrading Program (Grant No. NWNU-LKQN202011)。
文摘A plasmonic resonator system consisting of a metal–insulator–metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are investigated by using the finite difference in time domain(FDTD) method, and the simulation results contain two resonant dips. The physical mechanism is studied by the multimode interference coupled mode theory(MICMT), and the theoretical results are in highly consistent with the simulation results. Furthermore, the parameters of the Q-shaped cavity can be controlled to adjust the two dips, respectively. The refractive index sensor proposed in this paper, with a sensitivity of 1578 nm/RIU and figure of merit(FOM) of 175, performs better than most of the similar structures. Therefore, the results of the study are instructive for the design and application of high sensitivity nanoscale refractive index sensors.
文摘To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium niobate waveguide. The system configuration and the principle of the method are analyzed and some experimental results are given out. Both the experimental result and simulation show that this method is simple, rapid and of sufficient precision.
文摘Photonic crystal fiber (PCF) is employed as a refractive index sensor (RIS) for solving a lot of problems in biological, physicochemical, medical, engineering fields and many environmental challenges, where it is used in many industries of food, medicines, chemical materials and material diagnosis. The kind of the PCFs was HC-1550 with three wavelengths of laser source were used;638 nm, 850 nm, and 1550 nm that are useful for recording the intended transmitted signal intensity. Therefore, the measured RI was in the range (1.469 - 1.455 RIU) at the temperature range (36 - 70)°C for the EBBA and it was (1.621 - 1.612 RIU) at the temperature range (22 - 42)°C for the MBBA. The results showed that the highest RI sensitivity was 96.335 dBm/RIU for the HC-1550 infiltrated with MBBA using the laser of wavelength 638 nm, Also, the highest temperature sensitivity was 0.2505 dBm/°C for empty HC-1550 using the laser of wavelength 1550 nm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775182 and 61505165)Marie Sktodowska-Curie Individual Fellowships in the European Union’s Horizon 2020 Research and Innovation Programme(Grant No.660648)
文摘We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SMF with the same tilt angle,and then excites two sets of superposed spectral combs of cladding modes.The cascaded TFBG with total length of 18 mm has a much wider wavelength range over 100 nm and narrower wavelength separation than that of a TFBG only in the SMF,enabling an enlarged range and a higher accuracy of refractive index measurement.The fabricated TFBG with the merits of enhanced sensing capability and temperature self-calibration presents great potentials in the biochemical sensing applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271030)
文摘Many experimental investigations on the temperature dependence of the refractive index of optical fibers have been reported previously, however a satisfying theoretical explanation for it is still absent. In this paper, a theoretical model about the temperature dependence of the refractive index of optical fibers is presented and it is in agreement with the previous experimental results. This work is a significant reference for the research and development of temperature sensors based on optical fiber delay lines.
文摘A new structure of the photonic crystal fiber(PCF)based Mach-Zednder interferometer(MZI)is fabricated and presented.The structure has microholes ablated by a femtosecond laser.The fringe visibility can be enhanced more than 10 dB compared with the interferometer without a microhole.The interferometer is characterized by sodium chloride solutions for refractive index(RI)sensing.The RI sensitivities are greatly increased by the hole fabrication since it directly changes the cladding modes of the PCF.For the interferometer sensor with two holes,the RI sensitivity is 157.74 nm/RIU,which is 5 times than that of the sensor without a microhole.Microholes ablation with a femtosecond laser on PCF can increase the sensor's sensitivity dramatically.Femtosecond laser has a wide application prospect in the field of performance improvement of the sensors.
基金Basic Science Center Project of the National Natural Science Foundation of China(61988102)National Natural Science Foundation of China(62275157)+1 种基金Shanghai Shuguang Program(18SG44)111 Project(D18014)。
文摘The terahertz(THz)wave is at the intersection between photonics and electronics in the electromagnetic spectrum.Since the vibration mode of many biomedical molecules and the weak interaction mode inside the molecules fall in the THz regime,utilizing THz radiation as a signal source to operate substance information sensing has its unique advantages.Recently,the metamaterial sensor(metasensor)has greatly enhanced the interaction between signal and substances and spectral selectivity on the subwavelength scale.However,most past review articles have demonstrated the THz metasensor in terms of their structures,applications,or materials.Until recently,with the rapid development of metasensing technologies,the molecular information has paid much more attention to the platform of THz metasensors.In this review,we comprehensively introduce the THz metasensor for detecting not only the featureless refractive index but also the vibrational/chiral molecular information of analytes.The objectives of this review are to improve metasensing specificity either by chemical material-assisted analyte capture or by physical molecular information.Later,to boost THz absorption features in a certain frequency,the resonant responses of metasensors can be tuned to the molecular vibrational modes of target molecules,while frequency multiplexing techniques are reviewed to enhance broadband THz spectroscopic fingerprints.The chiral metasensors are also summarized to specific identification chiral molecules.Finally,the potential prospects of next generation THz metasensors are discussed.Compared to featureless refractive index metasensing,the specific metasensor platforms accelerated by material modification and molecular information will lead to greater impact in the advancement of trace detection of conformational dynamics of biomolecules in practical applications.
基金This work is supported by the Natural Science Foundation of HebeiPi rovincee(GranttNos.F2023501008 and F2020501040)the Fundamental Research Funds for the Central Universities(Grant No.N2323017)+1 种基金the National Natural Science Foundation of China(Grant No.62005186)the Engineeringg Featured Team Fund of Sichuan University(Grant No.2020SCUNG105).
文摘In this paper,a new concept of forward-pumped random Raman fiber laser(RRFL)-based liquid refractive index sensing is proposed for the first time.For liquid refractive index sensing,the flat fiber end immersed in the liquid can act as the point reflector for generating random fiber lasing and also as the sensing head.Due to the high sensitivity of the output power of the RRFL to the reflectivity provided by the point reflector in the ultralow reflectivity regime,the proposed RRFL is capable of achieving liquid refractive index sensing by measuring the random lasing output power.We theoretically investigate the effects of the operating pump power and fiber length on the refractive index sensitivity for the proposed RRFL.As a proof-of-concept demonstration,we experimentally realize high-sensitivity half-open short-cavity RRFL-based liquid refractive index sensing with the maximum sensitivity and the sensing resolution of-39.88W/RIU and 2.5075×10^(-5) RIU,respectively.We also experimentally verify that the refractive index sensitivity can be enhanced with the shorter fiber length of the RRFL.This work extends the application of the random fiber laser as a new platform for highly-sensitive refractive index sensing in chemical,biomedical,and environmental monitoring applications,etc.
文摘The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refractive index with optical fiber plasma wave. We make use of this characteristic to manufacture the plasma resonance fiber optic sensor which can detect the cure of epoxy compo site. We study the method of testing the solutions which have different refractive index with plasma resonance fiber optic sensor. A fiber optic sensing probe which has reliable performance and convenient operation for detecting the refractive index has been designed. The system for detecting the solution refractive index is developed and used to measure the refractive index of epoxy during the different phases in the cure process. Result shows that this system is credible and stable, the parameters tested are in accord with the facts.
文摘Recently, many programs have been developed for simulation or analysis of the different parameters of light propagation in optical fibers, either for sensing or for communication purposes. In this paper, it is shown the COMSOL Multiphysics as a fairly robust and simple program, due to the existence of a graphical environment, to perform simulations with good accuracy. Results are compared with other simulation analysis, focusing on the surface plasmon resonance (SPR) phenomena for refractive index sensing in a D-type optical fiber, where the characteristics of the material layers, in terms of the type and thickness, and the residual fiber cladding thickness are optimized.
基金National Natural Science Foundation of China(No.61405127)Shanxi Province Science Foundation for Youths(No.2014021023-1)+1 种基金Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi ProvinceProgram for Top Young Academic Leaders of Higher Learning Institutions in Shanxi Province
文摘In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fiber and multimode fiber,according to the singlemode multimode singlemode sequence to fuse together,and the fused optical fiber is used to process the taper.As a result,the diameter of the sensing head is about 10μm.Experimental results show that,as liquid refractive index increases range from 1.33 to 1.35,the loss peak of the transmission spectrum will shift to long wave direction.
基金jointly supported by the National Natural Science Foundation of China(No.51474069)the Local Universities Reformation and Development Personnel Training Supporting Project from Central Authorities(No.140119001)+1 种基金the Heilongjiang Postdoctoral Foundation(No.LBH-Q20081)the City University of Hong Kong Strategic Research Grant(SRG)(Nos.7005105 and 7005265)。
文摘Optical fibers have been widely applied to telecommunication,imaging,lasers,and sensing.Among the different types of fibers,photonic crystal fibers(PCFs),also called microstructured optical fibers,characterized by air holes arranged along the length of fibers have experienced tremendous advance due to their unique advantages.They are regarded as a desirable platform to excite surface plasmon resonance(SPR)because of easy realization of phase matching conditions between the fundamental core mode and the plasmonic mode,which plays a critical role in miniaturization and integration of SPR sensors.In this mini-review,the current status of PCF sensors based on SPR is summarized.The theory of SPR is discussed,and simulation methods for PCF-SPR sensors are described.The important parameters including the refractive index detection range,resonance wavelength,and spectral sensitivity responsible for the sensing properties of PCF-SPR sensors are reviewed.The fabrication and the comparison of performances are also illustrated,and,finally,the challenges and future perspectives are outlined.
基金The authors thank Xiangxian WANG from the School of Science, Lanzhou University of Technology, Lanzhou, China for their discussions to this research. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61367005 and 74011119) and the Natural Science Foundation of Gansu Province (Grant No. 17JR5RA078).
文摘A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by the finite element method (FEM). For the interaction of the narrow-band spectral response and the broadband spectral response caused by the side-coupled resonators and the rectangular resonator, respectively, the transmission spectra exhibit a sharp and asymmetric profile. Results are analyzed using the coupled-mode theory based on the transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity (S) as high as 1160 nm/RIU, and the corresponding sensing resolution is 8.62 × 10 -5 RIU. In addition, the coupled MIM waveguide structure can be easily extended to other similar compact structures to realize the sensing task and integrated with other photonic devices at the chip scale. This work paves the way toward the sensitive nanometer scale refractive index sensor for design and application.