期刊文献+
共找到393篇文章
< 1 2 20 >
每页显示 20 50 100
Intelligent Recognition Using Ultralight Multifunctional Nano‑Layered Carbon Aerogel Sensors with Human‑Like Tactile Perception
1
作者 Huiqi Zhao Yizheng Zhang +8 位作者 Lei Han Weiqi Qian Jiabin Wang Heting Wu Jingchen Li Yuan Dai Zhengyou Zhang Chris RBowen Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期172-186,共15页
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq... Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence. 展开更多
关键词 Multifunctional sensor tactile perception Multimodal machine learning algorithms Universal tactile system Intelligent object recognition
下载PDF
Fast-response,high-sensitivity multi-modal tactile sensors based on PPy/Ti_(3)C_(2)T_(x) films for multifunctional applications
2
作者 Guangshuai Xi Dongzhi Zhang +6 位作者 Mingcong Tang Hao Zhang Yuehang Sun Yubiao Zhang Haolin Cai Hui Xia Dandi Zhou 《Nano Research》 SCIE EI CSCD 2024年第5期4410-4419,共10页
In recent years,multi-modal flexible tactile sensors have become an important direction in the development of electronic skin because of their excellent sensitivity,flexibility and wearable properties.In this work,a h... In recent years,multi-modal flexible tactile sensors have become an important direction in the development of electronic skin because of their excellent sensitivity,flexibility and wearable properties.In this work,a humidity-pressure multi-modal flexible sensor based on polypyrrole(PPy)/Ti_(3)C_(2)T_(x) sensitive film packaged with porous polydimethylsiloxane(PDMS)is investigated by combining the sensitive structure generation mechanism of in situ polymerization to achieve the simultaneous detection of humidity and pressure,which has a sensitivity of 89,113.4Ω/%RH in a large humidity range of 0%-97%RH,and response/recovery time of 2.5/1.9 s.The tactile pressure sensing has a high sensitivity,a fast response of 67/52 ms,and a wide detection limit.The device also has excellent performance in terms of stability and repeatability,making it promising for respiratory pattern and motion detection.This work provides a new solution to address the construction of multi-modal tactile sensors with potential applications in the fields of medical health,epidemic prevention. 展开更多
关键词 multi-modal sensors humidity-pressure tactile sensors resistive sensors Ti3C2Tx human respiratory and motion detection
原文传递
Flexible Tactile Electronic Skin Sensor with 3D Force Detection Based on Porous CNTs/PDMS Nanocomposites 被引量:17
3
作者 Xuguang Sun Jianhai Sun +9 位作者 Tong Li Shuaikang Zheng Chunkai Wang Wenshuo Tan Jingong Zhang Chang Liu Tianjun Ma Zhimei Qi Chunxiu Liu Ning Xue 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期35-48,共14页
Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wi... Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications. 展开更多
关键词 Flexible tactile sensors ELECTRONIC SKIN Piezoresistive sensors CNTs/PDMS NANOCOMPOSITES 3D force detection
下载PDF
Graphene Nanostructure-Based Tactile Sensors for Electronic Skin Applications 被引量:8
4
作者 Pei Miao Jian Wang +3 位作者 Congcong Zhang Mingyuan Sun Shanshan Cheng Hong Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期239-275,共37页
Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn g... Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn great attention due to its potential applications in wearable human health monitoring and care systems,advanced robotics,artificial intelligence,and human-machine interfaces.Tactile sense is one of the most important senses of human skin that has attracted special attention.The ability to obtain unique functions using diverse assembly processible methods has rapidly advanced the use of graphene,the most celebrated two-dimensional material,in electronic tactile sensing devices.With a special emphasis on the works achieved since 2016,this review begins with the assembly and modification of graphene materials and then critically and comprehensively summarizes the most advanced material assembly methods,device construction technologies and signal characterization approaches in pressure and strain detection based on graphene and its derivative materials.This review emphasizes on:(1)the underlying working principles of these types of sensors and the unique roles and advantages of graphene materials;(2)state-of-the-art protocols recently developed for high-performance tactile sensing,including representative examples;and(3)perspectives and current challenges for graphene-based tactile sensors in E-skin applications.A summary of these cutting-edge developments intends to provide readers with a deep understanding of the future design of high-quality tactile sensing devices and paves a path for their future commercial applications in the field of E-skin. 展开更多
关键词 GRAPHENE DERIVATIVES tactile sensor ELECTRONIC SKIN Assembly
下载PDF
Artificial Tactile Sense Technique for Predicting Beef Tenderness Based on FS Pressure Sensor 被引量:2
5
作者 Xiao-dan Wang~1,Yong-hai Sun~1,Ying Wang~2,Tie-jun Hu~3,Min-hua Chen~1,Bing He~31.School of Biological and Agricultural Engineering,Jilin University,Changchun 130022,P.R.China2.School of Food Science and Engineer,Qingdao Agricultural University,Qingdao 266109,P.R.China3.Jilin Province Changchun Haoyue Halal Meat Co.,Ltd,Changchun 130013,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第2期196-201,共6页
We present a rapid system for predicting beef tenderness by mimicking the human tactile sense. The detection system includes a FS pressure sensor, a power supply conversion circuit, a signal amplifier and a box in whi... We present a rapid system for predicting beef tenderness by mimicking the human tactile sense. The detection system includes a FS pressure sensor, a power supply conversion circuit, a signal amplifier and a box in which the sample is mounted. A sample of raw Longissimus dorsi (LD) muscle is placed in the measuring box; then a rod connected to the pressure sensor is pressed into the beef sample to a given depth; the reaction force of the beef sample is measured and used to predict the tenderness. Sensory evaluation and Warner-Bratzler Shear Force (WBSF) evaluation of samples from the same LD muscle are used for comparison. The new detection system agrees with established procedure 95% of the time, and the time to test a sample is less than 5 minutes. 展开更多
关键词 BIONICS tactile sense beef tenderness detection FS pressure sensor
下载PDF
Optical Fiber Type Slide Tactile Sensor Used for Underwater Robot 被引量:1
6
作者 TAN Ding-zhong, ZHANG Li-xun, WANG Li-quan, MENG Zhuo, MENG Qing-xin (Harbin Engineering University, Harbin 150001, CHN) 《Semiconductor Photonics and Technology》 CAS 2000年第3期144-147,共4页
Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner... Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner modulation mechanism of the intensity type optical fiber. The principle and structure of the sensor are introduced in detail. The static and dynamic characteristics are analyzed theoretically and experimentally. The dynamic characteristic model is built and the simulation is made by using genetic algorithm based on neural network. In order to use the sensor perfectly, the recognition model of the sensor is built on the basis of the principle of “inverse solution” using neural networks. The control precision and sensitivity of the manipulator are improved. 展开更多
关键词 滑动触觉传感器 神经网络 光纤传感器 水下机器人
下载PDF
MEMS-based ZnO Piezoelectric Tactile Sensor for Minimally Invasive Surgery
7
作者 Minrui Wang Jing Wang +1 位作者 Yan Cui Liding Wang 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期436-438,共3页
This paper reports the design and fabrication of a MEMS-based ZnO piezoelectric tactile sensor,which can be integrated on to the endoscopic grasper used in minimally invasive surgery (MIS).The sensor includes a silico... This paper reports the design and fabrication of a MEMS-based ZnO piezoelectric tactile sensor,which can be integrated on to the endoscopic grasper used in minimally invasive surgery (MIS).The sensor includes a silicon substrate, platinum bottom electrode,platinum top electrode,and a ZnO piezoelectric thin film,which is sandwiched between the two-electrode layers.The sensitivity of the micro-force sensor is analyzed in theory and the sensor exhibits high sensitivity about 7pc/uN.The application of this tactile sensor to MIS will allow the surgeon feeling the touch force between the endoscopic grasper and tissue in real-time,and manipulating the tissue safely. 展开更多
关键词 tactile sensor PIEZOELECTRIC edoscopic grasper
下载PDF
A Liquid–Solid Interface-Based Triboelectric Tactile Sensor with Ultrahigh Sensitivity of 21.48 kPa-1
8
作者 Jingya Liu Zhen Wen +2 位作者 Hao Lei Zhenqiu Gao Xuhui Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期28-38,共11页
Traditional triboelectric tactile sensors based on solid–solid interface have illustrated promising application prospects through optimization approach.However,the poor sensitivity and reliability caused by hard cont... Traditional triboelectric tactile sensors based on solid–solid interface have illustrated promising application prospects through optimization approach.However,the poor sensitivity and reliability caused by hard contact-electrification still poses challenges for the practical applications.In this work,a liquid–solid interface ferrofluid-based triboelectric tactile sensor(FTTS)with ultrahigh sensitivity is proposed.Relying on the fluidity and magnetism of ferrofluid,the topography of microstructure can be flexibly adjusted by directly employing ferrofluid as triboelectric material and controlling the position of outward magnet.To date,an ultrahigh sensitivity of 21.48 k Pa;for the triboelectric sensors can be achieved due to the high spike microstructure,low Young’s modulus of ferrofluid and efficient solid–liquid interface contact-electrification.The detection limit of FTTS of 1.25 Pa with a wide detection range to 390 k Pa was also obtained.In addition,the oleophobic property between ferrofluid and poly-tetra-fluoro-ethylene triboelectric layer can greatly reduce the wear and tear,resulting in the great improvement of stability.Finally,a strategy for personalized password lock with high security level has been demonstrated,illustrating a great perspective for practical application in smart home,artificial intelligence,Internet of things,etc. 展开更多
关键词 FERROFLUID tactile sensor Triboelectric nanogenerator Microstructure Ultrahigh sensitivity
下载PDF
A Study on the Optical Fibre Tactile Sensor Array for Robots
9
作者 张今瑜 强锡富 +1 位作者 张立勋 陈非凡 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1995年第2期21-23,共3页
AStudyontheOpticalFibreTactileSensorArrayforRobotsZHANGJinyu;QIANGXifu;ZHANGLixun;CHENFeifan(张今瑜,强锡富,张立勋,陈非凡... AStudyontheOpticalFibreTactileSensorArrayforRobotsZHANGJinyu;QIANGXifu;ZHANGLixun;CHENFeifan(张今瑜,强锡富,张立勋,陈非凡)(Dept.ofPrecisio... 展开更多
关键词 ss:tactile sensor slipping sensor FIBRE-OPTIC sensor MACH-ZEHNDER INTERFEROMETER
下载PDF
CT Elastography: A Pilot Study via a New Endoscopic Tactile Sensor
10
作者 Takehisa Sasaki Mineyuki Haruta Sadao Omata 《Open Journal of Biophysics》 2014年第1期22-28,共7页
Objective: To develop a CT elastography imaging system useful for part of the human body in which ultrasound is not capable of reaching. The proposed system would measure CT modality through fusion of the stiffness ma... Objective: To develop a CT elastography imaging system useful for part of the human body in which ultrasound is not capable of reaching. The proposed system would measure CT modality through fusion of the stiffness mapping on the images by the tactile sensor system, improving precision of the endoscopic operation. Methods: We made some liver fibrosis phantoms of bovine skin gelatin with various densities as the target organ of the study. Using the tactile sensor system, which requires no compression during endoscopic operation, stiffness of each phantoms was measured. The resulting stiffness vs density curve was evaluated and translated to the stiffness vs CT number (Houndsfield Unit, HU) curve with a CT number vs density curve obtained by CT scan of the phantoms. A transformation formula can be deduced from these curves to the elasticity via CT number, which was confirmed in vitro with pig liver and in vivo CT scan data. Results: The stiffness and CT modality of each phantom was successfully measured and subjected to constant reduction. The CT value shows a linear relationship with the ROI values of the livers used. Conclusion: This paper reports method of supplementing stiffness information measured by a tactile sensor system, with a CT image for use with an endoscope. It is shown that CT number can be derived with a stiffness sensor and CT data in endoscopic surgery. From there results, we prove the possibility of measuring stiffness with CT and high resolution CT number. 展开更多
关键词 Computer TOMOGRAPHY ELASTOGRAPHY tactile sensor STIFFNESS Mapping ENDOSCOPY
下载PDF
Piezoresistive Characteristic of Conductive Rubber for Flexible Tactile Sensor
11
作者 黄英 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期443-448,共6页
In the research of 2D flexible tactile sensor matrix,pressure-sensitive conductive rubber was developed and tested in which carbon black was used as its conductive phase and silicon rubber as its matrix layer.Experime... In the research of 2D flexible tactile sensor matrix,pressure-sensitive conductive rubber was developed and tested in which carbon black was used as its conductive phase and silicon rubber as its matrix layer.Experiments were undertaken and the resultant data were used for its piezoresistive characteristics investigation for two kinds of electrode connection configurations,the surface directive connection and embedded connection.It is found that due to the rather strong nonlinearity of the piezoresistive characteristic curves obtained,a higher correlation relationship can be obtained by means of quadratic polynomial fitting.It also showed that the embedded electrode assembling has higher fitting accuracy while the surface directive connection has better mechanical sensitivity. 展开更多
关键词 conductive rubber piezoresistive effects flexible tactile sensor
下载PDF
Optical fiber based slide tactile sensor for underwater robots
12
作者 谭定忠 王启明 +2 位作者 宋瑞晗 姚昕 顾义华 《Journal of Marine Science and Application》 2008年第2期122-126,共5页
In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was ... In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator. 展开更多
关键词 水下机器人 触觉传感器 机械手 光学纤维
下载PDF
A High-Sensitivity Refractive-Index Sensor Based on Plasmonic Waveguides Asymmetrically Coupled with a Nanodisk Resonator
13
作者 肖丽萍 王发强 +2 位作者 梁瑞生 邹世伟 胡淼 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期13-16,共4页
A high-sensitivity plasmonic refractive-index sensor based on the asymmetrical coupling of two metal-insulator- metal waveguides with a nanodisk resonator is proposed and simulated in the finite-difference time domain... A high-sensitivity plasmonic refractive-index sensor based on the asymmetrical coupling of two metal-insulator- metal waveguides with a nanodisk resonator is proposed and simulated in the finite-difference time domain. Both analytic and simulated results show that the resonance wavelengths of the sensor have an approximate linear relationship with the refractive index of the materials which are filled into the slit waveguides and the disk- shaped resonator. The working mechanism of this sensor is exactly due to the linear relationship, based on which tile refractive index of the materials unknown can be obtained from the detection of the resonance wavelength. The measurement sensitivity can reach as high as 6.45 × 10-7, which is nearly five times higher than the results reported in the recent literature [Opt. Commun. 300 (2013) 265]. With an optimum design, the sensing value can be further improved, and it can be widely applied into the biological sensing. Tile sensor working for temperature sensing is also analyzed. 展开更多
关键词 A high-sensitivity Refractive-Index sensor Based on Plasmonic Waveguides Asymmetrically Coupled with a Nanodisk Resonator
下载PDF
Distance Estimation and Material Classification of a Compliant Tactile Sensor Using Vibration Modes and Support Vector Machine
14
作者 S.R.GUNASEKARA H.N.T.K.KALDERA +1 位作者 N.HARISCHANDRA L.SAMARANAYAKE 《Instrumentation》 2019年第1期34-47,共14页
Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negot... Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negotiating obstacles.A bionic tactile sensor used in the present work was inspired by the antenna of the stick insects.The sensor is able to detect an obstacle and its location in 3 D(Three dimensional) space.The vibration signals are analyzed in the frequency domain using Fast Fourier Transform(FFT) to estimate the distances.Signal processing algorithms,Artificial Neural Network(ANN) and Support Vector Machine(SVM) are used for the analysis and prediction processes.These three prediction techniques are compared for both distance estimation and material classification processes.When estimating the distances,the accuracy of estimation is deteriorated towards the tip of the probe due to the change in the vibration modes.Since the vibration data within that region have high a variance,the accuracy in distance estimation and material classification are lower towards the tip.The change in vibration mode is mathematically analyzed and a solution is proposed to estimate the distance along the full range of the probe. 展开更多
关键词 VIBRATION based active tactile sensor Artificial Neural Network Support vector machines DISTANCE estimation VIBRATION MODES Euler-Bernoulli beam element
下载PDF
Detection of Stiff Nodules Embedded in Soft Tissue Phantoms,Mimicking Cancer Tumours,Using a Tactile Resonance Sensor
15
作者 Anders P.Astrand Ville Jalkanen +1 位作者 Britt M.Andersson Olof A.Lindahl 《Journal of Biomedical Science and Engineering》 2014年第4期181-193,共13页
Background: Prostate cancer (PCa) is the most common form of cancer among males in Europe and in the USA and the most common curative treatment is removal of the prostate, i.e. prostatectomy. After the removal, the pr... Background: Prostate cancer (PCa) is the most common form of cancer among males in Europe and in the USA and the most common curative treatment is removal of the prostate, i.e. prostatectomy. After the removal, the prostate is histopathologically analysed. One area of interest is to examine the perifery of the prostate, as tumours on and near the surface can indicate that the PCa has spread to other parts of the body. There are no current methods to examine the surface of the prostate at the time of surgery. Tactile resonance sensors can be used for detecting areas of different stiffness in soft tissue. Human prostate tissue affected by cancer is usually stiffer than healthy tissue, and for this purpose, a tactile resonance sensor was developed. The aim of this study was to investigate the depth at which embedded stiffer volumes could be detected, using soft tissue phantoms. Methods: With the tactile resonance sensor used in this study, the shift of the resonance frequency and the force at contact with tissue can be measured, and combined into a tissue stiffness parameter. The detection sensitivity of the sensor at impression depths, 0.4 and 0.8 mm, was measured for detection of inserted nodules of stiff silicone in softer silicone and in chicken muscle tissue, mimicking prostate tissue with cancer tumours. Results: Measurements on the silicone samples detected the hidden stiffer object at a depth of 1 - 4 mm with a difference in the stiffness parameter of 80 - 900 mN/kHz (p < 0.028, n = 48). At the depth 5 - 6 mm the difference was smaller but still significant < 30 mN/kHz (p < 0.05, n = 24). For the measurements on chicken muscle, the detectable depth was 4 mm (p < 0.05, n = 24). Conclusion: This model study suggests that, with only a small impression depth of ≤1 mm, the resonance sensor system described here can detect stiffness variations located at least 4 mm in silicone and chicken muscle, mimicking tumours in prostate tissue. 展开更多
关键词 Tissue Stiffness Resonance sensor Prostate Cancer Piezoelectric Depth Sensitivity tactile sensor
下载PDF
Advances in advanced solution-synthesis-based structural materials for tactile sensors and their intelligent applications 被引量:1
16
作者 Hongsen Niu Ning Li +4 位作者 Eun-Seoung Kim Young Kee Shin Nam-Young Kim Guozhen Shen Yang Li 《InfoMat》 SCIE CSCD 2024年第1期31-64,共34页
Intelligent applications,with tactile sensors at their core,represent significant advancement in the field of artificial intelligence.However,achieving perception abilities in tactile sensors that match or exceed huma... Intelligent applications,with tactile sensors at their core,represent significant advancement in the field of artificial intelligence.However,achieving perception abilities in tactile sensors that match or exceed human skin remains a formidable challenge.Consequently,the design and implementation of hierarchical structural materials are considered the optimal solution to this challenge.In contrast to conventional methods,such as complicated lithography and three-dimensional printing,the cost-effective and scalable nature of advanced solution-synthesis methods makes them ideal for preparing diverse tactile sensors with hierarchical structural materials.However,the process and applicability of advanced solution synthesis methods have yet to form a seamless system.Accordingly,the development and intellectualization of tactile sensors based on advanced solution synthesis methods are still in their early stages,and require a comprehensive and systematic review to usher in progress.This study delves into the advantages and disadvantages of various advanced solution synthesis methods,providing detailed insights.Furthermore,the positive effects of hierarchical structural materials constructed using these methods in tactile sensors and their intelligent applications are also discussed in depth.Finally,the challenges and future opportunities faced by this emerging field are summarized. 展开更多
关键词 aqueous phase reduction artificial intelligence hydrothermal growth in situ polymerization tactile sensor
原文传递
A high-sensitive and self-selective humanoid mechanoreceptor for spatiotemporal tactile stimuli cognition
17
作者 Shuxin Bi Xuan Zhao +6 位作者 Fangfang Gao Xiaochen Xun Bin Zhao Liangxu Xu Tian Ouyang Qingliang Liao Yue Zhang 《Nano Research》 SCIE EI CSCD 2024年第5期4400-4409,共10页
The cognition of spatiotemporal tactile stimuli,including fine spatial stimuli and static/dynamic temporal stimuli,is paramount for intelligent robots to feel their surroundings and complete manipulation tasks.However... The cognition of spatiotemporal tactile stimuli,including fine spatial stimuli and static/dynamic temporal stimuli,is paramount for intelligent robots to feel their surroundings and complete manipulation tasks.However,current tactile sensors have restrictions on simultaneously demonstrating high sensitivity and performing selective responses to static/dynamic stimuli,making it a challenge to effectively cognize spatiotemporal tactile stimuli.Here,we report a high-sensitive and self-selective humanoid mechanoreceptor(HMR)that can precisely respond to spatiotemporal tactile stimuli.The HMR with PDMS/chitosan@CNTs(PDMS:polydimethylsiloxane;CNT:carbon nanotube)graded microstructures and polyurethane hierarchical porous spacer exhibits high sensitivity of 3790.8 kPa^(-1).The HMR demonstrates self-selective responses to static and dynamic stimuli with mono signal through the hybrid of piezoresistive and triboelectric mechanisms.Consequently,it can respond to spatiotemporal tactile stimuli and generate distinguishable and multi-type characteristic signals.With the assistance of the convolutional neural network,multiple target objects can be easily identified with a high accuracy of 99.1%.This work shows great potential in object precise identification and dexterous manipulation,which is the basis of intelligent robots and natural human-machine interactions. 展开更多
关键词 mechanoreceptors self-selective high-sensitive spatiotemporal tactile stimuli cognition sensors
原文传递
ACTIVE TACTILE SEARCHING TECHNIQUES BASED ON FORCE AND TACTILE INFORMATION FUSION
18
作者 蒋洪明 《Journal of Southeast University(English Edition)》 EI CAS 1995年第1期51-58,共8页
This paper analyses the seometry features of target object, prasents anactive searching principle and tactics based on information fusion of force and tac-tile, discusses the way of searching the object by usiap wrist... This paper analyses the seometry features of target object, prasents anactive searching principle and tactics based on information fusion of force and tac-tile, discusses the way of searching the object by usiap wrist force sensor and tac-tile sensor join 展开更多
关键词 ACTIVE tactile sensor WRIST FORCE sensor
下载PDF
Development of MEMS-based micro capacitive tactile probe
19
作者 雷李华 李源 +4 位作者 范国芳 吴俊杰 简黎 蔡潇雨 李同保 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期646-650,共5页
In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon tech... In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon technique. Based on the sensor, a micro capacitive tactile probe is constructed by stylus assembly and packaging design for dimension metrology on micro/nano scale, in which a data acquiring system is developed with AD7747. Some measurements of the micro capacitive tactile probe are performed on a nano positioning and measuring machine (NMM). The measurement results show good linearity and hysteresis with a range of 11.6 μm and resolution of better than 5 nm. Hence, the micro capacitive tactile probe can be integrated on NMM to realize measurement of micro structures with nanometer accuracy. 展开更多
关键词 micro tactile probe micro capacitive sensor MEMS nano measuring machine
下载PDF
Ultrasensitive and Highly Stretchable Multiple‑Crosslinked Ionic Hydrogel Sensors with Long‑Term Stability
20
作者 Jin‑Young Yu Seung Eon Moon +1 位作者 Jeong Hun Kim Seong Min Kang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期85-96,共12页
Flexible hydrogels are receiving significant attention for their application in wearable sensors.However,most hydrogel materials exhibit weak and one-time adhesion,low sensitivity,ice crystallization,water evaporation... Flexible hydrogels are receiving significant attention for their application in wearable sensors.However,most hydrogel materials exhibit weak and one-time adhesion,low sensitivity,ice crystallization,water evaporation,and poor self-recovery,thereby limiting their application as sensors.These issues are only partly addressed in previous studies.Herein,a multiplecrosslinked poly(2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium hydroxide-co-acrylamide)(P(SBMA-co-AAm))multifunctional hydrogel is prepared via a one-pot synthesis method to overcome the aforementioned limitations.Specifically,ions,glycerol,and 2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium hydroxide are incorporated to reduce the freezing point and improve the moisture retention ability.The proposed hydrogel is superior to existing hydrogels because it exhibits good stretchability(a strain of 2900%),self-healing properties,and transparency through effective energy dissipation in its dynamic crosslinked network.Further,2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium hydroxide as a zwitterion monomer results in an excellent gauge factor of 43.4 at strains of 1300-1600%by improving the ion transportability and achieving a strong adhesion of 20.9 kPa owing to the dipole-dipole moment.The proposed hydrogel is promising for next-generation biomedical applications,such as soft robots,and health monitoring. 展开更多
关键词 Hydrogel sensors Biocompatibility MULTIFUNCTION high-sensitivity sensors Multiple-crosslink association
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部